Gabor windows supported on [ − 1, 1] and dual windows with small support | Advances in Computational Mathematics
Skip to main content

Gabor windows supported on [ − 1, 1] and dual windows with small support

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Consider a continuous function g ∈ L 2(ℝ) that is supported on [ − 1, 1] and generates a Gabor frame with translation parameter 1 and modulation parameter \(0<b< \frac{2N}{2N+1}\) for some N ∈ ℕ. Under an extra condition on the zeroset of the window g we show that there exists a continuous dual window supported on [ − N, N]. We also show that this result is optimal: indeed, if \(b>\frac{2N}{2N+1}\) then a dual window supported on [ − N, N] does not exist. In the limit case \(b=\frac{2N}{2N+1}\) a dual window supported on [ − N, N] might exist, but cannot be continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bölcskei, H., Janssen, A.J.E.M.: Gabor frames, unimodularity, and window decay. J. Fourier Anal. Appl. 6(3), 255–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Christensen, O.: Frames and bases. An Introductory Course. Birkhäuser (2007)

  3. Christensen, O.: Pairs of dual Gabor frames with compact support and desired frequency localization. Appl. Comput. Harmon. Anal. 20, 403–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christensen, O., Kim, H.O., Kim, R.Y.: Gabor windows supported on [ − 1, 1] and compactly supported dual windows. Appl. Comput. Harmon. Anal. 28, 89–103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, O., Kim, R.Y.: On dual Gabor frame pairs generated by polynomials. J. Fourier Anal. Appl. 16, 1–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2000)

    Google Scholar 

  7. Janssen, A.J.E.M.: The duality condition for Weyl-Heisenberg frames. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis: Theory and Applications. Birkhäuser, Boston (1998)

    Google Scholar 

  8. Laugesen, R.S.: Gabor dual spline windows. Appl. Comput. Harmon. Anal. 27, 180–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of L 2(ℝd). Can. J. Math. 47(5), 1051–1094 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in L 2(ℝd). Duke Math. J. 89, 237–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rae Young Kim.

Additional information

Communicated by Qiyu Sun.

This research was supported by the Yeungnam University research grants in 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, O., Kim, H.O. & Kim, R.Y. Gabor windows supported on [ − 1, 1] and dual windows with small support. Adv Comput Math 36, 525–545 (2012). https://doi.org/10.1007/s10444-011-9189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9189-0

Keywords

Mathematics Subject Classifications (2010)