Abstract
We analyze a class of matrices generalizing strictly diagonally dominant matrices and included in the important class of H-matrices. Adequate pivoting strategies and the corresponding Schur complements are studied. A new class of matrices with all their principal minors positive is presented.
Similar content being viewed by others
References
Alanelli, M., Hadjidimos, A.: A new iterative criterion for H-matrices. SIAM J. Matrix Anal. Appl. 29, 160–176 (2006)
Alanelli, M., Hadjidimos, A.: On iterative criteria for H-and non-H-matrices. Appl. Math. Comput. 188, 19–30 (2007)
Alanelli, M., Hadjidimos, A.: A new iterative criterion for H-matrices: the reducible case. Linear Algebra Appl. 428, 2761–2777 (2008)
Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. In: Classics in Applied Mathematics, vol. 9. SIAM, Philadelphia (1994)
Bru, R., Corral, C., Gimenez, I., Mas, J.: Classes of general H-matrices. Linear Algebra Appl. 429, 2358–2366 (2008)
Cvetković, L., Kostić, V., Kovaćević, M., Szulc, T.: Further results on H-matrices and their Schur complements. Appl. Math. Comput. 198, 506–510 (2008)
Cvetković, L., Nedović, M.: Special H-matrices and their Schur and diagonal-Schur complements. Appl. Math. Comput. 208, 225–230 (2009)
Gudkov, V.V.: On a certain test for non-singularity of matrices (Russian). In: Latvian Math. Yearbook. Izdat. “Zinatne”, pp. 385–390. Riga (1965), (MR 33, 1966, #1323)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
Kohno, T., Niki, H., Sawami, H., Gao, Y.: An iterative test for H-matrices. J. Comput. Appl. Math. 115, 349–355 (2000)
Li, B., Li, L., Harada, M., Niki, H., Tsatsomeros, M.J.: An iterative criterion for H-matrices. Linear Algebra Appl. 271, 79–190 (1998)
Ojiro, K., Niki, H., Usui, M.: A new criterion for H-matrices. J. Comput. Appl. Math. 150, 293–302 (2003)
Peña, J.M.: Pivoting strategies leading to diagonal dominance by rows. Numer. Math. 81, 293–304 (1998)
Peña, J.M.: A class of P-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22, 1027–1037 (2001)
Peña, J.M.: Scaled pivots and scaled partial pivoting strategies. SIAM J. Numer. Anal. 41, 1022–1031 (2003)
Peña, J.M.: On an alternative to Gerschgorin circles and ovals of Cassini. Numer. Math. 95, 337–345 (2003)
Peña, J.M.: A stable test to check if a matrix is a nonsingular M-matrix. Math. Comput. 73, 1385–1392 (2004)
Szulc, T.: Some remark is on a theorem of Gudkov. Linear Algebra Appl. 225, 221–235 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Guest editors Juan Manuel Peña and Rafael Bru.
Research partially supported the Spanish Research Grant MTM2009-07315, Gobierno de Aragón and Fondo Social Europeo.
Rights and permissions
About this article
Cite this article
Peña, J.M. Diagonal dominance, Schur complements and some classes of H-matrices and P-matrices. Adv Comput Math 35, 357–373 (2011). https://doi.org/10.1007/s10444-010-9160-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-010-9160-5