Diagonal dominance, Schur complements and some classes of H-matrices and P-matrices | Advances in Computational Mathematics Skip to main content
Log in

Diagonal dominance, Schur complements and some classes of H-matrices and P-matrices

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We analyze a class of matrices generalizing strictly diagonally dominant matrices and included in the important class of H-matrices. Adequate pivoting strategies and the corresponding Schur complements are studied. A new class of matrices with all their principal minors positive is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alanelli, M., Hadjidimos, A.: A new iterative criterion for H-matrices. SIAM J. Matrix Anal. Appl. 29, 160–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alanelli, M., Hadjidimos, A.: On iterative criteria for H-and non-H-matrices. Appl. Math. Comput. 188, 19–30 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alanelli, M., Hadjidimos, A.: A new iterative criterion for H-matrices: the reducible case. Linear Algebra Appl. 428, 2761–2777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. In: Classics in Applied Mathematics, vol. 9. SIAM, Philadelphia (1994)

    Google Scholar 

  5. Bru, R., Corral, C., Gimenez, I., Mas, J.: Classes of general H-matrices. Linear Algebra Appl. 429, 2358–2366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cvetković, L., Kostić, V., Kovaćević, M., Szulc, T.: Further results on H-matrices and their Schur complements. Appl. Math. Comput. 198, 506–510 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cvetković, L., Nedović, M.: Special H-matrices and their Schur and diagonal-Schur complements. Appl. Math. Comput. 208, 225–230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gudkov, V.V.: On a certain test for non-singularity of matrices (Russian). In: Latvian Math. Yearbook. Izdat. “Zinatne”, pp. 385–390. Riga (1965), (MR 33, 1966, #1323)

  9. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  10. Kohno, T., Niki, H., Sawami, H., Gao, Y.: An iterative test for H-matrices. J. Comput. Appl. Math. 115, 349–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, B., Li, L., Harada, M., Niki, H., Tsatsomeros, M.J.: An iterative criterion for H-matrices. Linear Algebra Appl. 271, 79–190 (1998)

    MathSciNet  Google Scholar 

  12. Ojiro, K., Niki, H., Usui, M.: A new criterion for H-matrices. J. Comput. Appl. Math. 150, 293–302 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peña, J.M.: Pivoting strategies leading to diagonal dominance by rows. Numer. Math. 81, 293–304 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peña, J.M.: A class of P-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22, 1027–1037 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peña, J.M.: Scaled pivots and scaled partial pivoting strategies. SIAM J. Numer. Anal. 41, 1022–1031 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peña, J.M.: On an alternative to Gerschgorin circles and ovals of Cassini. Numer. Math. 95, 337–345 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peña, J.M.: A stable test to check if a matrix is a nonsingular M-matrix. Math. Comput. 73, 1385–1392 (2004)

    Article  MATH  Google Scholar 

  18. Szulc, T.: Some remark is on a theorem of Gudkov. Linear Algebra Appl. 225, 221–235 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Peña.

Additional information

Communicated by Guest editors Juan Manuel Peña and Rafael Bru.

Research partially supported the Spanish Research Grant MTM2009-07315, Gobierno de Aragón and Fondo Social Europeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, J.M. Diagonal dominance, Schur complements and some classes of H-matrices and P-matrices. Adv Comput Math 35, 357–373 (2011). https://doi.org/10.1007/s10444-010-9160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9160-5

Keywords

Mathematics Subject Classifications (2010)

Navigation