Abstract
In this paper we investigate Isotropic Multiresolution Analysis (IMRA), isotropic refinable functions, and wavelets. The main results are the characterization of IMRAs in terms of the Lax–Wiener Theorem, and the characterization of isotropic refinable functions in terms of the support of their Fourier transform. As an immediate consequence of these results, there are no compactly supported (in the space domain) isotropic refinable functions in many dimensions. Next we study the approximation properties of IMRAs. Finally, we discuss the application of IMRA wavelets to 2D and 3D-texture segmentation in natural and biomedical images.
Similar content being viewed by others
References
Adelson, E.H., Simoncelli, E., Hingoranp, R.: Orthogonal pyramid transforms for image coding. In: Visual Communications and Image Processing II, Proceedings SPIE, vol. 845, pp. 50–58 (1987)
Aldroubi, A., Cabrelli, C., Molter, U.: Wavelets on irregular grids with arbitrary dilation matrices and frame atoms on L 2(R d). Appl. Comput. Harmon. Anal. 17(2), 119–140. Special Issue: Frames in Harmonic Analysis, Part II (2004)
Alexander, S.K., Azencott, R., Papadakis, M.: Isotropic multiresolution analysis for 3D-textures and applications in cardiovascular imaging. In: Van Der Ville, D., Goyal, V., Papadakis, M. (eds.) Wavelets XII, SPIE, vol. 6701, pp. 67011S-1–67011S-12 (2007)
Antonini, M., Barlaud, M., Mathieu, P.: Image coding using lattice vector quantization of wavelet coefficients. In: IEEE Internat. Conf. Acoust. Signal Speech Process., pp. 2273–2276 (1991)
Ayache, A.: Construction de bases d’ondelettes orthonormées de L 2(R 2) non séparables, à support compact et de régularité arbitrairement grande. Comptes Rendus Académie des Sciences de Paris 325, 17–20 (1997)
Ayache, A.: Construction of non separable dyadic compactly supported wavelet bases for L 2(R 2) of arbitrarily high regularity. Rev. Mat. Iberoam 15 15(1), 37–58 (1999)
Ayache, A.: Some methods for constructing non separable, orthonormal, compactly supported wavelet bases. Appl. Comput. Harmon. Anal. 10, 99–111 (2001)
Baggett, L.W., Jorgensen, P.E.T., Merrill, K.D., Packer, J.A.: Construction of Parseval wavelets from redundant filter systems. J. Math. Phys. 46, 083502–1–083502–28 (2005)
Belogay, E., Wang, Y.: Arbitrarily smooth orthogonal nonseparable wavelets in R 2. SIAM J. Math. Anal. 30, 678–697 (1999)
Benedetto, J.J., Romero, J.R.: The construction of d-dimensional multiresolution analysis frames. J. Appl. Func. Anal. 2(4), 403–426 (2007)
Benedetto, J.J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998)
Benedetto, J.J., Treiber, O.M.: Wavelet frames: multiresolution analysis and the unitary extension principle. In: Debnath, L. (ed.) Wavelet Transforms and Time-Frequency Signal Analysis, pp. 3–36. Birkhauser, Boston MA (2001)
Bodmann, B.G., Papadakis, M., et al.: Frame isotropic multiresolution analysis for micro CT scans of coronary arteries. In: Papadakis, M., Laine, A., Unser, M. (eds.) Wavelets XI, SPIE, vol. 5914, pp. 59141O/1–12 (2005)
Bownik, M.: The structure of shift invariant subspaces of L 2(ℝn). J. Funct. Anal. 177, 282–309 (2000)
Bownik, M.: A characterization of affine dual frames in L 2(ℝn). Appl. Comput. Harmon. Anal. 8, 203–221 (2000)
Cabrelli, C., Heil, C., Molter, U.: Self-similarity and multiwavelets in higher dimensions. In: Memoirs, Amer. Math. Soc. AMS, vol. 170 (2004)
Candes, E.J., Donoho, D.L.: Ridgelets: a key to higher dimensional intermittency? Phil. Trans. R. Soc. Lond. A, 2495–2509 (1999)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 36, 961–1005 (1986)
Christensen, O.: Frames and Riesz Bases. Birkhäuser, Boston (2005)
Coggins, J.M., Jain, A.K.: A spatial filtering approach to texture analysis. Pattern recogn. Lett. 3(3), 195–203 (1985)
Cohen, A., Daubechies, I.: Nonseparable bidimensional wavelet bases. Rev. Mat. Iberoam 9, 51–137 (1993)
Condat, L., Forster-Heinlein, B., Van Der Ville, D.: A new family of rotation-covariant wavelets on the hexagonal lattice. In: Van Der Ville, D., Goyal, V., Papadakis, M. (eds.) Wavelets XII, SPIE, vol. 6701, pp. 67010B-1–67010B-9 (2007)
Conway, J.B.: A Course in Operator Theory. Graduate Studies in Mathematics, vol. 21. American Mathematical Society, Providence, RI (2000)
Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput Harmon. Anal. 14(1), 1–46 (2003)
de Boor, C., DeVore, R., Ron, A.: Approximation from shift-invariant subspaces of L 2(R d). Trans. Am. Math. Soc. 341, 787–806 (1994)
Derado, J.: Nonseprable, compactly supported interpolating refinable functions with arbitrary smoothness. Appl. Comput. Harmon. Anal. 10(2), 113–138 (2001)
Dettori, L., Zayed, A.I.: Texture identification of tissues using directional wavelet, ridgelet and curvelet transforms. In: Larson, D.R., Massopust, P.R., Nashed, Z., Nguyen, M.-C., Papadakis, M., Zayed, A.I. (eds.) Frames and Operator Theory in Analysis and Signal Processing, Contemp. Mathem., Amer. Math. Soc., vol. 451, pp. 89–118 (2008)
Donoho, D.L., Huo, X.: Beamlets and multiscale image analysis. In: Barth, T.J., Chan, T., Haimes, R. (eds.) Springer Lecture Notes in Computational Science and Engineering, vol. 20, pp. 149–196 (2002)
Epperson, J., Frazier, M.: An almost orthogonal radial wavelet expansion for radial distributions. J. Fourier Anal. Appl. 1(3), 311–353 (1995)
Epperson, J., Frazier, M.: Polar wavelets and associated Littlewood–Paley theory. Diss. Math. 348, 1–51 (1996)
Fickus, M., Mixon, D.G.: Isotropic moments over integer lattices. Appl. Comp. Harmon. Anal. 26(1), 77–96 (2009)
Fickus, M., Seetharaman, G.S., Oxley, M.E.: Multiscale moment transforms over the integer lattice. In: Van Der Ville, D., Goyal, V., Papadakis, M. (eds.) Wavelets XII, SPIE, vol. 6701, pp. 67011N-1–67011N-8 (2007)
Forster, B., Blu, T., Van Der Ville, D., Unser, M.: Shift-invariant spaces from rotation-covariant functions. Appl. Comp. Harmon. Anal. 25(2), 240–265 (2008)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
Gertz, S.D., Cherukuri, P., Bodmann, B.G., Gladdish, G., Wilner, W.T., Conyers, J.L., Aboshady, I., Madjid, M., Vela, D., Lukovenkov, S., Papadakis, M., Kouri, D.J., Mohammadi Mazraeshahi, R., Frazier, L., Elrod, D., Willerson, J.T., Casscells, S.W.: Usefulness of multi-detector computed tomography for non-envasive evaluation of coronary arteries in asymptomatic patients. Am. J. Cardiol. 97, 287–293 (2006)
Gertz, S.D., Bodmann, B.G., Vela, D., Papadakis, M., Aboshady, I., Cherukuri, P., Alexander, S.K., Kouri, D.J., Baid, S., Gittens, A.A., Gladish, G.W., Conyers, J.L., Cody, D.D., Gavish, L., Mazraeshahi, R.M., Wilner, W.T., Frazier, L., Madjid, M., Zarrabi, A., Lukovenkov, S., Ahmed, A., Willerson, J.T., Casscells, S.W.: Three-dimensional isotropic wavelets for post-acquisitional extraction of latent images of atherosclerotic plaque components from micro-computed tomography of human coronary arteries. Acad. Radiol. 17, 1509–1519 (2007)
Grochenig, K., Madych, W.: Multiresolution analysis, Haar bases and self-similar tilings. IEEE Trans. Inf. Theory 38, 558–568 (1992)
Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.: Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20 (2006)
Han, B.: On dual tight wavelet frames. Appl. Comput. Harmon. Anal. 4(4), 380–413 (1997)
He, W., Lai, M.J.: Examples of bivariate nonseparable compactly supported orthonormal continuous wavelets. In: Unser, M., Aldroubi, A., Laine, A. (eds.) Wavelet Applications in Signal and Image Processing IV, Proceedings SPIE, vol. 3169, pp. 303–314 (1997)
Heinlein, P., Drexl, J., Schneider, W.: Integrated wavelets for enhancement of microcalcifications in digital mamography. IEEE Trans. Med. Imag. 22(3), 402–413 (2003)
Hernández, E., Weiss, G.: A First Course on Wavelets. CRC, Boca Raton, FL (1996)
Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 1167–1186 (1991)
Jain, S., Papadakis, M., Dussaud, E.: Explicit schemes in seismic migration and isotropic multiscale representations. In: Grinberg, E., Larson, D.R., Jorgensen, P.E.T., Massopust, P., Olafsson, G., Quinto, E.T., Rubin, B. (eds.) Radon Transforms, Geometry, and Wavelets, Contemp. Mathem., Amer. Math. Soc., vol. 464, pp. 177–200 (2008)
Karasaridis, A., Simoncelli, E.: A filter design technique for steerable pyramid image transforms. In: Acoustics Speech and Signal Processing, ICASP, Atlanta, GA (1996)
Kingsbury, N.: Image processing with complex wavelets. Phil. Trans. R. Soc. London A 357, 2543–2560 (1999)
Kovačević, J., Vetterli, M.: Nonseparable multidimensional perfect reconstruction filter-banks. IEEE Trans. Inf. Theory 38, 533–555 (1992)
Labate, D., Lim, W., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. In: Papadakis, M., Laine, A., Unser, M. (eds.) Wavelets XI, SPIE Proceedings, vol. 5914, pp. 247–255, January 2005
Lawton, W., Resnikoff, H.L.: Multidimensional wavelet bases. Technical Report, Aware, Inc., Bedford, MA, February 1991
Lax, P.D.: Translation invariant spaces. Acta Math. 101, 163–178 (1959)
Lindemann, M.: Approximation Properties of Non-separable Wavelet Bases with Isotropic Scaling Matrices and their Relation to Besov Spaces. Ph.D. Thesis, Universitaet Bremen (2005)
Marr, D.: Vision, a Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, New York, NY (1982)
Olafsson, G., Speegle, D.: Wavelets, wavelet sets and linear actions on ℝn. In: Heil, C., Jorgensen, P., Larson, D. (eds.) Wavelets, Frames and Operator Theory, Contemporary Mathematics, vol. 345, pp. 253–281 (2004)
Papadakis, M.: Frames of translates and the generalized frame multiresolution analysis. In: Kopotun, K., Lyche, T., Neamtu, M. (eds.) Trends in Approximation Theory, Innovations in Applied Mathematics, pp. 353–362. Vanderbilt University Press, Nashville, TN (2001)
Papadakis, M., Bodmann, B.G., Alexander, S.K., Vela MD, D., Baid, S., Gittens, A.A., Kouri, D.J, Gertz MD, S.D., Jain, S., Romero, J.R, Li, X., Cherukuri, P., Cody, D.D., Gladish MD, G.W., Aboshady MD, I., Conyers, J.L., Casscells, S.W.: Texture-based tissue characterization for high-resolution CT-scans of coronary arteries. Commun. Numer. Methods Eng. (2009, in press)
Papadakis, M., Gogoshin, G., Kakadiaris, I.A., Kouri, D.J., Hoffman, D.K.: Non-separable radial frame multiresolution analysis in multidimensions. Numer. Func. Anal. Optim. 24, 907–928 (2003)
Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using Gaussian scale mixtures in the wavelet domain. In: IEEE Trans. Image Processing, vol.12(11), pp. 1338–1351. Computer Science Techn. Rep. nr. TR2002-831, Courant Institute of Mathematical Sciences (2003)
Rajpoot, N., Wilson, R., Yao, Z.: Planelets: a new analysis tool for planar feature extraction. In: Proceedings 5th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS’04), Lisbon, Portugal, April 2004
Ron, A., Shen, Z.: Affine system in L 2(R d): the analysis of the Analysis operator. J. Func. Anal. 148, 408–447 (1997)
Selesnick, I.W.: Smooth wavelet tight frames with zero moments. Appl. Comput. Harmon. Anal. 10(2), 163–181 (2001)
Selesnick, I.W., Sendur, L.: Iterated oversampled filter banks and wavelet frames. In: Unser, M., Aldroubi, A., Laine, A. (eds.) Wavelet Applications in Signal and Image Processing VIII. Proceedings of SPIE, vol. 4119 (2000)
Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multi-scale transforms. IEEE Trans. Inf. Theory 38(2), 587–607 (1992)
Starck, J.-L., Moudden, Y., Bobin, J., Elad, M., Donoho, D.L.: Morphological component analysis. In: Papadakis, M., Laine, A.F., Unser, M. (eds.) Wavelets XI, SPIE, vol. 5914, pp. 59140Q-1–59140Q-15 (2005)
Tzagkarakis, G., Beferull-Lozano, B., Tsakalides, P.: Rotation-invariant texture retrieval with Gaussianized steerable pyramids. IEEE Trans. Image Process. 15(9), 2702–2718 (2006)
Vetterli, M., Kovačević, J.: Wavelets and Subband Coding. Prentice Hall PTR, Englewood Cliffs, NJ (1995)
Wan, Y., Nowak, R.D.: Quasi-circular rotation invariance in image denoising. In: ICIP, vol. 1, pp. 605–609 (1999)
Wheeden, R.L., Zygmund, A.: Measure and Integral. An Introduction to Real Analysis. Pure and Applied Mathematics. Marcel-Dekker, New York (1977)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Lixin Shen and Yuesheng Xu.
Rights and permissions
About this article
Cite this article
Romero, J.R., Alexander, S.K., Baid, S. et al. The geometry and the analytic properties of isotropic multiresolution analysis. Adv Comput Math 31, 283–328 (2009). https://doi.org/10.1007/s10444-008-9111-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-008-9111-6
Keywords
- Isotropic wavelets
- Isotropic multiresolution
- 3D-textures
- Steerability
- 3D-data representations
- Rigid motion covariant representations