On polynomial symbols for subdivision schemes | Advances in Computational Mathematics Skip to main content
Log in

On polynomial symbols for subdivision schemes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Given a dilation matrix A :ℤd→ℤd, and G a complete set of coset representatives of 2π(A −Td/ℤd), we consider polynomial solutions M to the equation ∑ g∈G M(ξ+g)=1 with the constraints that M≥0 and M(0)=1. We prove that the full class of such functions can be generated using polynomial convolution kernels. Trigonometric polynomials of this type play an important role as symbols for interpolatory subdivision schemes. For isotropic dilation matrices, we use the method introduced to construct symbols for interpolatory subdivision schemes satisfying Strang–Fix conditions of arbitrary order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for L 2(R 2) of arbitrarily high regularity, Rev. Mat. Iberoamericana 15(1) (1999) 37–58.

    MATH  MathSciNet  Google Scholar 

  2. E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in R 2, SIAM J. Math. Anal. 30(3) (1999) 678–697 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Bownik, The construction of r-regular wavelets for arbitrary dilations, J. Fourier Anal. Appl. 7(5) (2001) 489–506.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bownik and D. Speegle, Meyer type wavelet bases in ℝ 2, J. Approx. Theory 116(1) (2002) 49–75.

    Article  MATH  MathSciNet  Google Scholar 

  5. C.A. Cabrelli, C. Heil and U.M. Molter, Multiwavelets in ℝ n with an arbitrary dilation matrix, in: Wavelets and Signal Processing, Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2003) pp. 23–39.

    Google Scholar 

  6. A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93(453) (1991) vi+186.

    MathSciNet  Google Scholar 

  7. A. Cohen and I. Daubechies, Nonseparable bidimensional wavelet bases, Rev. Mat. Iberoamericana 9(1) (1993) 51–137.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Cohen, I. Daubechies and G. Plonka, Regularity of refinable function vectors, J. Fourier Anal. Appl. 3(3) (1997) 295–324.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Cohen, K. Gröchenig and L.F. Villemoes, Regularity of multivariate refinable functions, Constr. Approx. 15(2) (1999) 241–255.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Dahmen and C.A. Micchelli, Biorthogonal wavelet expansions, Constr. Approx. 13(3) (1997) 293–328.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61 (SIAM, Philadelphia, PA, 1992).

    MATH  Google Scholar 

  12. J. Derado, Multivariate refinable interpolating functions, Appl. Comput. Harmon. Anal. 7(2) (1999) 165–183.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Derado, Nonseparable compactly supported interpolating refinable functions with arbitrary smoothness, Appl. Comput. Harmon. Anal. 10(2) (2001) 113–138.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matrix Anal. Appl. 24(3) (2003) 693–714 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  15. W. He and M.-J. Lai, Construction of bivariate compactly supported biorthogonal box spline wavelets with arbitrarily high regularities, Appl. Comput. Harmon. Anal. 6(1) (1999) 53–74.

    Article  MATH  MathSciNet  Google Scholar 

  16. R.-Q. Jia, Interpolatory subdivision schemes induced by box splines, Appl. Comput. Harmon. Anal. 8(3) (2000) 286–292.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.-Q. Jia and Q. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets, SIAM J. Matrix Anal. Appl. 24(4) (2003) 1071–1109 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Kovačević and M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for ℝ n, IEEE Trans. Inform. Theory 38(2) (1992) 533–555.

    Article  MathSciNet  Google Scholar 

  19. J.C. Lagarias and Y. Wang, Haar bases for L 2(R n) and algebraic number theory, J. Number Theory 57(1) (1996) 181–197.

    Article  MATH  MathSciNet  Google Scholar 

  20. P.G. Lemarie-Rieusset, Some remarks on orthogonal and bi-orthogonal wavelets, Mat. Appl. Comput. 15(2) (1996) 125–137.

    MATH  MathSciNet  Google Scholar 

  21. P.G. Lemarie-Rieusset and E. Zahrouni, More regular wavelets, Appl. Comput. Harmon. Anal. 5(1) (1998) 92–105.

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Maass, Families of orthogonal two-dimensional wavelets, SIAM J. Math. Anal. 27(5) (1996) 1454–1481.

    Article  MATH  MathSciNet  Google Scholar 

  23. C.A. Micchelli, Interpolatory subdivision schemes and wavelets, J. Approx. Theory 86(1) (1996) 41–71.

    Article  MATH  MathSciNet  Google Scholar 

  24. C.A. Micchelli and T. Sauer, Regularity of multiwavelets, Adv. Comput. Math. 7(4) (1997) 455–545.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Nielsen, On the construction and frequency localization of finite orthogonal quadrature filters, J. Approx. Theory 108(1) (2001) 36–52.

    Article  MATH  MathSciNet  Google Scholar 

  26. S.D. Riemenschneider and Z. Shen, Multidimensional interpolatory subdivision schemes, SIAM J. Numer. Anal. 34(6) (1997) 2357–2381.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Nielsen.

Additional information

Communicated by T. Sauer

Research partially supported by the Danish Technical Science Foundation, Grant No. 9701481, and by the Danish SNF-PDE network.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, M. On polynomial symbols for subdivision schemes. Adv Comput Math 27, 195–209 (2007). https://doi.org/10.1007/s10444-005-7476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-7476-3

Keywords

Mathematics subject classifications (2000)

Navigation