Abstract
Given a dilation matrix A :ℤd→ℤd, and G a complete set of coset representatives of 2π(A −Tℤd/ℤd), we consider polynomial solutions M to the equation ∑ g∈G M(ξ+g)=1 with the constraints that M≥0 and M(0)=1. We prove that the full class of such functions can be generated using polynomial convolution kernels. Trigonometric polynomials of this type play an important role as symbols for interpolatory subdivision schemes. For isotropic dilation matrices, we use the method introduced to construct symbols for interpolatory subdivision schemes satisfying Strang–Fix conditions of arbitrary order.
Similar content being viewed by others
References
A. Ayache, Construction of non-separable dyadic compactly supported orthonormal wavelet bases for L 2(R 2) of arbitrarily high regularity, Rev. Mat. Iberoamericana 15(1) (1999) 37–58.
E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in R 2, SIAM J. Math. Anal. 30(3) (1999) 678–697 (electronic).
M. Bownik, The construction of r-regular wavelets for arbitrary dilations, J. Fourier Anal. Appl. 7(5) (2001) 489–506.
M. Bownik and D. Speegle, Meyer type wavelet bases in ℝ 2, J. Approx. Theory 116(1) (2002) 49–75.
C.A. Cabrelli, C. Heil and U.M. Molter, Multiwavelets in ℝ n with an arbitrary dilation matrix, in: Wavelets and Signal Processing, Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2003) pp. 23–39.
A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93(453) (1991) vi+186.
A. Cohen and I. Daubechies, Nonseparable bidimensional wavelet bases, Rev. Mat. Iberoamericana 9(1) (1993) 51–137.
A. Cohen, I. Daubechies and G. Plonka, Regularity of refinable function vectors, J. Fourier Anal. Appl. 3(3) (1997) 295–324.
A. Cohen, K. Gröchenig and L.F. Villemoes, Regularity of multivariate refinable functions, Constr. Approx. 15(2) (1999) 241–255.
W. Dahmen and C.A. Micchelli, Biorthogonal wavelet expansions, Constr. Approx. 13(3) (1997) 293–328.
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61 (SIAM, Philadelphia, PA, 1992).
J. Derado, Multivariate refinable interpolating functions, Appl. Comput. Harmon. Anal. 7(2) (1999) 165–183.
J. Derado, Nonseparable compactly supported interpolating refinable functions with arbitrary smoothness, Appl. Comput. Harmon. Anal. 10(2) (2001) 113–138.
B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matrix Anal. Appl. 24(3) (2003) 693–714 (electronic).
W. He and M.-J. Lai, Construction of bivariate compactly supported biorthogonal box spline wavelets with arbitrarily high regularities, Appl. Comput. Harmon. Anal. 6(1) (1999) 53–74.
R.-Q. Jia, Interpolatory subdivision schemes induced by box splines, Appl. Comput. Harmon. Anal. 8(3) (2000) 286–292.
R.-Q. Jia and Q. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets, SIAM J. Matrix Anal. Appl. 24(4) (2003) 1071–1109 (electronic).
J. Kovačević and M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for ℝ n, IEEE Trans. Inform. Theory 38(2) (1992) 533–555.
J.C. Lagarias and Y. Wang, Haar bases for L 2(R n) and algebraic number theory, J. Number Theory 57(1) (1996) 181–197.
P.G. Lemarie-Rieusset, Some remarks on orthogonal and bi-orthogonal wavelets, Mat. Appl. Comput. 15(2) (1996) 125–137.
P.G. Lemarie-Rieusset and E. Zahrouni, More regular wavelets, Appl. Comput. Harmon. Anal. 5(1) (1998) 92–105.
P. Maass, Families of orthogonal two-dimensional wavelets, SIAM J. Math. Anal. 27(5) (1996) 1454–1481.
C.A. Micchelli, Interpolatory subdivision schemes and wavelets, J. Approx. Theory 86(1) (1996) 41–71.
C.A. Micchelli and T. Sauer, Regularity of multiwavelets, Adv. Comput. Math. 7(4) (1997) 455–545.
M. Nielsen, On the construction and frequency localization of finite orthogonal quadrature filters, J. Approx. Theory 108(1) (2001) 36–52.
S.D. Riemenschneider and Z. Shen, Multidimensional interpolatory subdivision schemes, SIAM J. Numer. Anal. 34(6) (1997) 2357–2381.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by T. Sauer
Research partially supported by the Danish Technical Science Foundation, Grant No. 9701481, and by the Danish SNF-PDE network.
Rights and permissions
About this article
Cite this article
Nielsen, M. On polynomial symbols for subdivision schemes. Adv Comput Math 27, 195–209 (2007). https://doi.org/10.1007/s10444-005-7476-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-005-7476-3