Abstract
We show that the local trigonometric bases introduced by Malvar, Coifman and Meyer constitute bases, but not unconditional bases, for Lp(ℝ) with 1<p<∞, p≠2. In addition, we characterize the functions in Lp(ℝ) for 1<p<∞ in terms of their local trigonometric basis coefficients.
Similar content being viewed by others
References
P. Auscher, G. Weiss and M.V. Wickerhauser, Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets, in: Wavelets – A Tutorial in Theory and Applications, ed. C.K. Chui (Academic Press, Boston, 1992) pp. 237–256.
P. Auscher, Remarks on the local Fourier bases, in: Wavelets: Mathematics and Applications, eds. J.J. Benedetto and M.W. Frazier (CRC Press, Boca Raton, FL, 1994) pp. 203–218.
A. Averbuch, E. Braverman and R. Coifman, Efficient computation of oscillatory integrals via adaptive multiscale local Fourier bases, Appl. Comput. Harmon. Anal. 9 (2000) 19–53.
K. Bittner, Error estimates and reproduction of polynomials for bi-orthogonal local trigonometric bases, Appl. Comput. Harmon. Anal. 6 (1999) 75–102.
K. Bittner, Verallgemeinerte Klappoperatoren und Bi-orthogonale Wilson-Basen, Ph.D. thesis, Technische Uniersität München (Shaker Verlag, Aachen, 2000).
L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966) 135–157.
C.K. Chui and X. Shi, Characterization of bi-orthogonal cosine wavelets, J. Fourier Anal. Appl. 3 (1997) 559–575.
R.R. Coifman and Y. Meyer, Remarques sur l'analyse de Fourier à fenêtre, C. R. Acad. Sci. Paris Sér. I 312 (1991) 259–261.
H.G. Feichtinger, K. Gröchenig and D. Walnut, Wilson bases and modulation space, Math. Nachr. 155 (1992) 7–17.
L. Grafakos and C. Lennard, Characterization of Lp(ℝn) using Gabor frames, J. Fourier Anal. Appl. 7(2) (2001) 101–126.
K. Gröchenig and S. Samarah, Non-linear approximation with local Fourier bases, Constr. Approx. 16 (2000) 317–331.
E. Hernándaz and G.L. Weiss, A First Course on Wavelets (CRC Press, New York, 1996).
R.A. Hunt, On the convergence of Fourier series, in: Proc. of Conf. on Orthogonal Expansions and Their Continuous Analogues, Edwardsville, IL (1967) (Sounthern Illinois Univ. Press, Carbondale, IL, 1968) pp. 235–255.
B. Jawerth, Y. Liu and W. Sweldens, Signal compression with smooth local trigonometric bases, Opt. Engrg. 33 (1994) 2125–2135.
B. Jawerth and W. Sweldens, Bi-orthogonal smooth local trigonometric bases, J. Fourier Anal. Appl. 2 (1995) 109–133.
R. Larsen, An Introduction to the Theory of Multipliers, Grandlehren der mathematishen Wissenschaften, Vol. 175 (Springer, New York, 1971).
Q. Lian, Y. Wang and D. Yan, Efficient computations of oscillatory singular integrals with local Fourier bases and their error estimates, Preprint.
Q. Lian, Y. Wang and D. Yan, Optimal local trigonometric bases with nonuniform partitions, Acta Math. Sinica, English Series, accepted.
S. Lu, M.H. Taibleson and G. Weiss, On the almost everywhere convergence of Bochner–Riesz means of multiple Fourier series, in: Lecture Notes in Mathematics, Vol. 908 (Springer, New York, 1982) pp. 311–318.
S. Lu and Z. Yan, Criterion on Lp-boundedness for a class of oscillatory singular integral with rough kernel, Rev. Mat. Iberoamericana 2(8) (1992) 201–219.
H.S. Malvar, Lapped transforms for efficient transform/subband coding, IEEE Trans. Acoustic Speech Signal Process. 38 (1990) 969–978.
H.S. Malvar, Signal Processing with Lapped Transforms (Artech House, Norwood, MA, 1992).
G. Matviyenko, Optimized local trigonometric bases, Appl. Comput. Harmon. Anal. 3 (1996) 301–323.
E. Wesfreid and M.V. Wickerhauser, Adapted local trigonometric transforms and speech processing, IEEE Trans. Signal Process. 41 (1993) 3596–3600.
Author information
Authors and Affiliations
Additional information
Communicated by A. Zhou
Dedicated to Dr. Charles A. Micchelli for his 60th birthday
Mathematics subject classification (2000)
42C15.
Supported by Prof. Y. Xu under his grant in program of “One Hundred Distinguished Chinese Scientists” of the Chinese Academy of Sciences, the National Natural Science Foundation of China (No. 10371122), and the second author is supported by Tianyuan Fund for Mathematics (No. A0324648).
Rights and permissions
About this article
Cite this article
Lian, Q., Wang, Y. & Yan, D. A characterization of Lp(ℝ) by local trigonometric bases with 1<p<∞. Adv Comput Math 25, 91–104 (2006). https://doi.org/10.1007/s10444-004-7625-0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10444-004-7625-0