Retrieval of forest structural parameters using LiDAR remote sensing | European Journal of Forest Research Skip to main content

Advertisement

Log in

Retrieval of forest structural parameters using LiDAR remote sensing

  • Review
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In this paper, a literature overview is presented on the use of laser rangefinder techniques for the retrieval of forest inventory parameters and structural characteristics. The existing techniques are ordered with respect to their scale of application (i.e. spaceborne, airborne, and terrestrial laser scanning) and a discussion is provided on the efficiency, precision, and accuracy with which the retrieval of structural parameters at the respective scales has been attained. The paper further elaborates on the potential of LiDAR (Light Detection and Ranging) data to be fused with other types of remote sensing data and it concludes with recommendations for future research and potential gains in the application of LiDAR for the characterization of forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The term ‘single returns’ was used to refer to the occasion that only one echo was sensed, and hence no distinction in order can be made.

  2. The VCL (Vegetation Canopy LiDAR) Mission was intended for terrestrial ecosystem and climate modelling and prediction.

References

  • Alados CL, Escos J, Emlen JM, Freeman DC (1999) Characterization of branch complexity by fractal analyses. Int J Plant Sci 160:s147–s155

    Article  PubMed  Google Scholar 

  • Andersen H-E, McGaughey RJ, Reutebuch SE (2005) Estimating forest canopy fuel parameters using LiDAR data. Remote Sens Environ 94:441–449

    Article  Google Scholar 

  • Anderson JE, Plourde LC, Martin ME, Braswell BH, Smith M-L, Dubayah RO, Hofton MA, Blair JB (2008) Integrating waveform LiDAR with hyperspectral imagery for inventory of a northern temperate forest. Remote Sens Environ 112:1856–1870

    Article  Google Scholar 

  • Aschoff T, Spiecker H (2004) Algorithms for the automatic detection of trees in laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI, part 8/W2:71–75

  • Bienert A, Maas H-G, Scheller S (2006a) Analysis of the information content of terrestrial laserscanner point clouds for the automatic determination of forest inventory parameters. ISPRS WG VIII/11 & EARSeL joint Conference ‘3D Remote Sensing in Forestry’, Vienna, Austria, 14–15 February

  • Bienert A, Scheller S, Keane E, Mullooly G, Mohan F (2006b) Application of terrestrial laser scanners for the determination of forest inventory parameters. In: Maas H-G, Schneider D (eds) Proceedings of ISPRS commission V symposium ‘Image engineering and vision metrology’, ISPRS, Dresden, Germany, 25–27 September

  • Bienert A, Scheller S, Keane E, Mohan F, Nugent C (2007) Tree detection and diameter estimations by analysis of forest terrestrial laser scanner point clouds. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, pp 50–55, 12–14 September 2007

  • Blair JB, Rabine DL, Hofton MA (1999) The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J Photogramm Remote Sens 54:115–122

    Article  Google Scholar 

  • Boudon F, Godin C, Pradal C, Puech O, Sinoquet H (2006) Estimating the fractal dimension of plants using the two-surface method: an analysis based on 3D digitized tree foliage. Fractals 14:149–163

    Article  Google Scholar 

  • Brandtberg T, Warner TA, Landenberger RE, McGraw JB (2003) Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens Environ 85:290–303

    Article  Google Scholar 

  • Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S (2010) Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens Environ 114:911–924

    Article  Google Scholar 

  • Brolly G, Király G (2009) Algorithms for stem mapping by means of terrestrial laser scanning. Acta Silv Lignaria Hung 5:119–130

    Google Scholar 

  • Bucksch A, Fleck S (2009) Automated detection of branch dimensions in woody skeletons of leafless fruit tree canopies. SilviLaser 2009, Austin, Oct 14–16

  • Bucksch A, Lindenbergh R (2008) CAMPINO—a skeletonization method for point cloud processing. ISPRS J Photogramm Remote Sens 63:115–127

    Article  Google Scholar 

  • Chen Q, Baldocchi D, Gong P, Kelly M (2006) Isolating individual trees in a savanna woodland using small footprint lidar data. Photogramm Eng Remote Sens 72:923–932

    Google Scholar 

  • Coops NC, Hilker T, Wulder M, St-Onge B, Newnham G, Siggins A, Trofymow JA (2007) Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees 21:295–310

    Article  Google Scholar 

  • Côté J, Widlowski J, Fournier RA, Verstraete MM (2009) The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens Environ 113:1067–1081

    Article  Google Scholar 

  • Danson FM, Hetherington D, Morsdorf F, Koetz B, Allgöwer B (2007) Forest canopy gap fraction from terrestrial laser scanning. IEEE Geosci Remote Sens Lett 4:157–160

    Article  Google Scholar 

  • Donoghue DNM, Watt PJ, Cox NJ, Wilson J (2007) Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. Remote Sens Environ 110:509–522

    Article  Google Scholar 

  • Drake JB, Weishampel JF (2000) Multifractal analysis of canopy height measures in a longleaf pine savanna. For Ecol Manag 128:121–127

    Article  Google Scholar 

  • Drake JB, Dubayah RO, Clark DB, Knox RG, Blair B, Hofton MA, Chazdon RL, Weishampel JF, Prince SD (2002) Estimation of tropical forest structural characteristics using large-footprint LiDAR. Remote Sens Environ 79:305–319

    Article  Google Scholar 

  • Flamant PH (2005) Atmospheric and meteorological LiDAR: from pioneers to space applications. Comptes Rendus Phys 6:864–875

    Article  CAS  Google Scholar 

  • Fleck S, Van der Zande D, Schmidt M, Coppin P (2004) Reconstructions of tree structures from laser-scans and their use to predict physiological properties and processes in canopies. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:118–123

  • Fleck S, Obertreiber N, Schmidt I, Brauns M, Jungkunst HF, Leuschner C (2007) Terrestrial LiDAR measurements for analysing canopy structure in an old-growth forest. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 3/W52:125–129

  • Fröhlich Z, Mettenleiter M (2004) Terrestrial laser scanning—new perspectives in 3D surveying. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:7–13

  • Gaveau DLA, Hill RA (2003) Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Can J Remote Sens 29:650–657

    Google Scholar 

  • Gitelson AA (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol 161:165–173

    Article  PubMed  CAS  Google Scholar 

  • Goodwin NR, Coops NC, Culvenor DS (2006) Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sens Environ 103:140–152

    Article  Google Scholar 

  • Gorte B, Winterhalder D (2004) Reconstruction of laser-scanned trees using filter operations in the 3D raster domain. Int Arch Photogramm, Remote Sens Spat Inf Sci XXXVI part 8/W2: 39–44

  • Gougeon FA (2005) The individual tree crown (ITC) suite. Canadian Forest Service, Victoria

    Google Scholar 

  • Green AA, Berman P, Switzer P, Craig MD (1988) A transform for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74

    Article  Google Scholar 

  • Harding DJ, Carabajal CC (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys Res Lett 32:L21s10

    Article  Google Scholar 

  • Henning JG, Radtke PJ (2006) Detailed stem measurements of standing trees from ground-based scanning LiDAR. For Sci 52:67–80

    Google Scholar 

  • Heurich M (2008) Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park. For Ecol Manag 255:2416–2433

    Article  Google Scholar 

  • Hilker T, Wulder MA, Coops NC (2008) Update of forest inventory data with LiDAR and high spatial resolution satellite imagery. Can J Remote Sens 34:5–12

    Google Scholar 

  • Holmgren J, Persson Å (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423

    Article  Google Scholar 

  • Holmgren J, Nilsson M, Olsson H (2003) Estimation of tree height and stem volume on plots using airborne laser scanning. For Sci 49:419–428

    Google Scholar 

  • Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest metrics with a ground-based scanning LiDAR. Can J Remote Sens 34:573–583

    Google Scholar 

  • Hough PVC (1962) Method and means for recognizing complex patterns. US Patent 3,069,654

  • Hug C, Ullrich A, Grimm A (2004) Litemapper-5600—a waveform-digitizing LiDAR terrain and vegetation mapping system. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2: 24–29

  • Jupp DLB, Culvenor DS, Lovell JL, Newnham GJ, Strahler AH, Woodcock CE (2009) Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna®’. Tree Physiol 29:171–181

    Article  PubMed  Google Scholar 

  • Kalliovirta J, Laasasenaho J, Kangas A (2005) Evaluation of the laser-relascope. For Ecol Manag 204:181–194

    Article  Google Scholar 

  • Kato A, Moskal LM, Schiess P, Swanson ME, Calhoun D, Stuetzle W (2009) Capturing tree crown formation through implicit surface reconstruction using airborne lidar data. Remote Sens Environ 113:1148–1162

    Article  Google Scholar 

  • Király G, Brolly G (2007) Tree height estimation methods for terrestrial laser scanning in a forest reserve. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 3/W52:211–215

  • Kirchhof M, Jutzi B, Stilla U (2008) Iterative processing of laser scanning data by full waveform analysis. ISPRS J Photogramm Remote Sens 63:99–114

    Article  Google Scholar 

  • Koetz B, Sun G, Morsdorf F, Ranson KJ, Kneubühler M, Itten K, Allgöwer B (2007) Fusion of imaging spectrometer and LiDAR data over combined radiative transfer models for forest canopy characterization. Remote Sens Environ 106:449–459

    Article  Google Scholar 

  • Kumar L, Schmidt K, Dury S, Skidmore A (2002) Imaging spectrometry and vegetation science. In: Van der Meer FD, De Jong SM (eds) Imaging spectrometry. Springer, Netherlands, pp 111–156

    Chapter  Google Scholar 

  • Leckie D, Gougeon F, Hill D, Quinn R, Armstrong L, Shreenan R (2003) Combined high-density LiDAR and multispectral imagery for individual tree crown analysis. Can J Remote Sens 29:633–649

    Google Scholar 

  • Lee AC, Lucas RM (2007) A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests. Remote Sens Environ 111:493–518

    Article  Google Scholar 

  • Lefsky M, Harding DJ, Cohen WB, Parker GG, Shugart HH (1999) Surface LiDAR remote sensing of basal area and biomass in deciduous forests of eastern maryland, USA. Remote Sens Environ 67:83–98

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Spies TA (2001) An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forest in Western Oregon. Can J Remote Sens 31:78–87

    Google Scholar 

  • Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Espirito-Santo FDB, Hunter MO, de Oliveira JR (2005a) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32:L22S02

    Article  Google Scholar 

  • Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005b) Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95:532–548

    Article  Google Scholar 

  • Lefsky M, Keller M, Pang Y, de Camargo PB, Hunter MO (2007) Revised method for forest canopy height estimation from geoscience laser altimeter system waveforms. J Appl Remote Sens 1:013537

    Article  Google Scholar 

  • Liang X, Litkey P, Hyyppä J, Kukko A, Kaartinen H, Holopainen M (2008) Plot-level trunk detection and reconstruction using one-scan-mode terrestrial laser scanning data. 2008 International workshop on earth observation and remote sensing applications, IEEE, Beijing, 30 June–2 July

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. Wiley, Hoboken, NJ

    Google Scholar 

  • Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 27:88–106

    Article  Google Scholar 

  • Lindenmayer DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950

    Article  Google Scholar 

  • Lovell JL, Jupp DLB, Newnham GJ, Coops NC, Culvenor DS (2005) Simulation study for finding optimal LiDAR acquisition parameters for forest height retrieval. For Ecol Manag 214:398–412

    Article  Google Scholar 

  • Maas H-G, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens 29:1579–1593

    Article  Google Scholar 

  • MacArthur RH, Horn HS (1969) Foliage profile by vertical measurements. Ecol 50:802–804

    Article  Google Scholar 

  • Maltamo M, Eerikäinen K, Pitkänen J, Hyppä J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330

    Article  Google Scholar 

  • McCombs JW, Roberts SD, Evans DL (2003) Influence of fusing LiDAR and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation. For Sci 49:457–466

    Google Scholar 

  • Middleton WEK, Spilhaus AF (1953) Meteorological instruments. University of Toronto Press, Toronto

    Google Scholar 

  • Moorthy I, Miller JR, Hu B, Chen J, Li Q (2008) Retrieving crown leaf area index from an individual tree using ground-based lidar data. Can J Remote Sens 34:320–332

    Google Scholar 

  • Morsdorf F, Meier E, Koetz B, Itten KI, Dobbertin M, Allgöwer B (2004) LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens Environ 92:353–362

    Article  Google Scholar 

  • Morsdorf F, Koetz B, Meier E, Itten KI, Allgöwer B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61

    Article  Google Scholar 

  • Morsdorf F, Frey O, Meier E, Itten KI, Allgöwer B (2008) Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning. Int J Remote Sens 29:1387–1406

    Article  Google Scholar 

  • Morsdorf F, Nichol C, Malthus T, Woodhouse IH (2009) Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens Environ 113:2152–2163

    Article  Google Scholar 

  • Murphy G (2008) Determining stand value and log product yields using terrestrial lidar and optimal bucking: a case study. J For 106:317–324

    Article  Google Scholar 

  • Myneni R, Nemani R, Running S (1997) Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans Geosci Remote Sens 35:1380–1393

    Article  Google Scholar 

  • Næsset E (2009a) Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 113:148–159

    Article  Google Scholar 

  • Næsset E (2009b) Influence of terrain model smoothing and flight and sensor configurations on detection of small pioneer trees in the boreal-alpine transition zone utilizing height metrics derived from airborne scanning lasers. Remote Sens Environ 113:2210–2223

    Article  Google Scholar 

  • Næsset E, Gobakken T (2008) Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ 112:3079–3090

    Article  Google Scholar 

  • Næsset E, Økland T (2002) Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens Environ 79:105–115

    Article  Google Scholar 

  • Næsset E, Bollandsås OM, Gobakken T (2005) Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sens Environ 94:541–553

    Article  Google Scholar 

  • Nelson RF (2008) Model effects on GLAS-based regional estimates of forest biomass and carbon. SilviLaser 2008, 17–19 September, Edinburgh, pp 207–215

  • Nelson R, Jimenez J, Schnell CE, Hartshorn GS, Gregoire TG, Oderwald R (2000) Canopy height models and airborne lasers to estimate forest biomass: two problems. Int J Remote Sens 21:2153–2162

    Article  Google Scholar 

  • Noss RF (1999) Assessing and monitoring forest biodiversity: a suggested framework and indicators. For Ecol Manag 115:135–146

    Article  Google Scholar 

  • Ørka HO, Næsset E, Bollandsås OM (2009) Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens Environ 113:1163–1174

    Article  Google Scholar 

  • Parker GG, Harding DJ, Berger ML (2004) A portable LiDAR system for rapid determination of forest canopy structure. J Appl Ecol 41:755–767

    Article  Google Scholar 

  • Parkes D, Newell G, Cheal D (2003) Assessing the quality of native vegetation: the ‘habitat hectares’ approach. Ecol Manag Restor 4(supplement):s29–s38

    Article  Google Scholar 

  • Pfeifer N, Briese C (2007) Geometrical aspects of airborne and terrestrial laser scanning. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 3/W52: 311–319

  • Pfeifer N, Winterhalder D (2004) Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2: 76–81

  • Popescu S, Wynne RH (2004) Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm Eng Remote Sens 70:589–604

    Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2002) Estimating plot-level tree heights with LiDAR: local filtering with a canopy-height based variable window size. Comput Electron Agric 37:71–95

    Article  Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577

    Google Scholar 

  • Rahman MZA, Gorte BGH (2009) Tree crown delineation from high resolution airborne lidar based on densities of high points. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII part 3/W8:123–128

  • Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004a) Landcover attributes from ICESat GLAS data in central Siberia. In: Proceedings of international geoscience and remote sensing symposium 2004, 20–24 September. IEEE International, Anchorage, pp 753–756

  • Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004b) Use of ICESat GLAS data for forest disturbance studies in central Siberia. In: Proceedings of international geoscience and remote sensing symposium 2004, 20–24 September. IEEE International, Anchorage, pp 1936–1939

  • Ranson KJ, Kimes D, Sun G, Nelson R, Kharuk V, Montesano P (2007) Using MODIS and GLAS data to develop timber volume estimates in central Siberia. In: International Conference on Geoscience and Remote Sensing Symposium 2007, 23–28 July. IEEE, Barcelona, pp 2306–2309

  • Reese H, Nilsson M, Sandström P, Olsson H (2002) Applications using estimates of forest parameters derived from satellite and forest inventory data. Comput Electron Agric 37:37–55

    Article  Google Scholar 

  • Reitberger J, Krzystek P, Stilla U (2008) Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int J Remote Sens 29:1407–1431

    Article  Google Scholar 

  • Reitberger J, Schnörr C, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64:561–574

    Article  Google Scholar 

  • Riaño D, Meier E, Allgoewer B, Chuvieco E, Ustin SL (2003) Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sens Environ 86:177–186

    Article  Google Scholar 

  • Ritchie JC (1996) Remote sensing applications to hydrology: airborne laser altimeters. Hydrol Sci J 41:625–636

    Article  Google Scholar 

  • Roberts G (1998) Simulating the vegetation canopy LiDAR: an investigation of the waveform information content. Masters, University College London, London

    Google Scholar 

  • Roberts JW, Tesfamichael S, Gebreslasie M, Van Aardt J, Ahmed FB (2007) Forest structural assessment using remote sensing technologies: an overview of the current state of the art. South Hemisph For J 69:183–203

    Article  Google Scholar 

  • Rosette JAB, North PRJ, Suárez JC (2008) Vegetation height estimates for a mixed temperate forest using satellite laser altimetry. Int J Remote Sens 29:1475–1493

    Article  Google Scholar 

  • Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K (2008) Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography. Landsc Ecol Eng 4:47–55

    Article  Google Scholar 

  • Schaepman ME (2007) Spectrodirectional remote sensing: from pixels to processes. Int J Appl Earth Obs Geoinf 9:204–223

    Article  Google Scholar 

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905

    Article  Google Scholar 

  • Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR (2008) A systematic method for 3D mapping of mangrove forests based on shuttle radar topography mission elevation data, ICEsat/GLAS waveforms and field data: application to Ciénaga Grande de Santa Marta, Colombia. Remote Sens Environ 112:2131–2144

    Article  Google Scholar 

  • Smith B, Knorr W, Widlowski J-L, Pinty B, Gobron N (2008) Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances. For Ecol Manag 255:3985–3994

    Article  Google Scholar 

  • St-Onge B, Vega C, Fournier RA, Hu Y (2008) Mapping canopy height using a combination of digital stereo-photogrammetry and LiDAR. Int J Remote Sens 29:3343–3364

    Article  Google Scholar 

  • Strahler AH, Jupp DLB, Woodcock CE, Schaaf CB, Yao T, Zhao F, Yang X, Lovell J, Culvenor D, Newnham G, Ni-Miester W, Boykin-Morris W (2008) Retrieval of forest structural parameters using a ground-based lidar instrument ‘Echidna®’. Can J Remote Sens 34:S426–S440

    Google Scholar 

  • Sun G, Ranson KJ, Kimes DS, Blair JB, Kovacs K (2008) Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data. Remote Sens Environ 112:107–117

    Article  Google Scholar 

  • Takahashi T, Kazukiyo Y, Senda Y, Tsuzuku M (2005) Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J For Res 10:135–142

    Article  Google Scholar 

  • Tansey K, Selmes N, Anstee A, Tate NJ, Denniss A (2009) Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. Int J Remote Sens 30:5195–5209

    Article  Google Scholar 

  • Teobaldelli M, Zenone T, Puig D, Matteucci M, Seufert G, Sequeira V (2007) Structural tree modelling of aboveground and belowground poplar tree using direct and indirect measurements: terrestrial laser scanning, WGROGRA, AMAPmod and JRC-3D Reconstructor®. Functional Structural Plant Models, Napier, New Zealand, November 4–9

  • Thies M, Spiecker H (2004) Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:192–197

  • Thies M, Pfeifer N, Winterhalder D, Gorte BGH (2004) Three-dimensional reconstruction of stems for assessment of taper, sweep, and lean based on laser scanning of standing trees. Scand J For Res 19:571–581

    Article  Google Scholar 

  • Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314

    Article  Google Scholar 

  • Van Leeuwen M, Coops NC, Wulder MA (2010) Canopy surface reconstruction from a LiDAR point cloud using hough transform. Remote Sens Lett 1:125–132

    Google Scholar 

  • Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J Photogramm Remote Sens 60:100–112

    Article  Google Scholar 

  • Wagner W, Hollaus M, Briese C, Ducic V (2008) 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. Int J Remote Sens 29:1433–1452

    Article  Google Scholar 

  • Watt PJ, Donoghue DNM (2005) Measuring forest structure with terrestrial laser scanning. Int J Remote Sens 26:1437–1446

    Article  Google Scholar 

  • Wehr A, Lohr U (1999) Airborne laser scanning—an introduction and overview. ISPRS J Photogramm Remote Sens 54:68–82

    Article  Google Scholar 

  • Weinacker H, Koch B, Heyder U, Weinacker R (2004) Development of filtering, segmentation and modelling modules for LIDAR and multispectral data as a fundament of an automatic forest inventory system. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:50–55

  • Wezyk P, Tompalski P, Szostak M, Glista M, Pierzchalski M (2008) Describing the selected canopy layer parameters of the Scots pine stands using ALS data. SilviLaser 2008, Edinburgh, Sept 17–19

  • Wulder MA, Bater CW, Coops NC, Hilker T, White JC (2008) The role of LiDAR in sustainable forest management. For Chron 84:807–826

    Google Scholar 

  • Xu H, Gossett N, Chen B (2007) Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans Graph 26:19:1–19:13

    Google Scholar 

  • Yong G, Zengyuan L, Sun G, Lefsky M, Xinfang Y (2006) Model based terrain effect analyses on ICEsat GLAS waveforms. In: Proceedings of IEEE international conference on geoscience remote sensing symposium 2006, 31 July–4 Aug. IEEE, Denver, pp 3232–3235

  • Yu X, Hyppä J, Hyppä H, Maltamo M (2004) Effects of flight altitude on tree height estimation using airborne laser-scanning. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:96–101

  • Yu X, Hyyppä J, Kaartinen H, Maltamo M, Hyyppä H (2008) Obtaining plotwise mean height and volume growth in boreal forests using multi-temporal laser surveys and various change detection techniques. Int J Remote Sens 29:1367–1386

    Article  Google Scholar 

  • Zhao K, Popescu S (2009) Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens Environ 113:1628–1645

    Article  Google Scholar 

  • Zhao K, Popescu S, Nelson R (2009) LiDAR remote sensing of forest biomass: a scale invariant estimation approach using airborne lasers. Remote Sens Environ 113:182–196

    Article  Google Scholar 

  • Zimble DA, Evans DL, Carlson GC, Parker RC, Grado SC, Gerard PD (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens Environ 87:171–182

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank COFORD (the Irish National Council for Forest Research and Development) for funding the FORESTSCAN project, through which this research was made possible, and two anonymous reviewers for their constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin van Leeuwen.

Additional information

Communicated by J. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Leeuwen, M., Nieuwenhuis, M. Retrieval of forest structural parameters using LiDAR remote sensing. Eur J Forest Res 129, 749–770 (2010). https://doi.org/10.1007/s10342-010-0381-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0381-4

Keywords

Navigation