Abstract
In this paper, a literature overview is presented on the use of laser rangefinder techniques for the retrieval of forest inventory parameters and structural characteristics. The existing techniques are ordered with respect to their scale of application (i.e. spaceborne, airborne, and terrestrial laser scanning) and a discussion is provided on the efficiency, precision, and accuracy with which the retrieval of structural parameters at the respective scales has been attained. The paper further elaborates on the potential of LiDAR (Light Detection and Ranging) data to be fused with other types of remote sensing data and it concludes with recommendations for future research and potential gains in the application of LiDAR for the characterization of forests.
Similar content being viewed by others
Notes
The term ‘single returns’ was used to refer to the occasion that only one echo was sensed, and hence no distinction in order can be made.
The VCL (Vegetation Canopy LiDAR) Mission was intended for terrestrial ecosystem and climate modelling and prediction.
References
Alados CL, Escos J, Emlen JM, Freeman DC (1999) Characterization of branch complexity by fractal analyses. Int J Plant Sci 160:s147–s155
Andersen H-E, McGaughey RJ, Reutebuch SE (2005) Estimating forest canopy fuel parameters using LiDAR data. Remote Sens Environ 94:441–449
Anderson JE, Plourde LC, Martin ME, Braswell BH, Smith M-L, Dubayah RO, Hofton MA, Blair JB (2008) Integrating waveform LiDAR with hyperspectral imagery for inventory of a northern temperate forest. Remote Sens Environ 112:1856–1870
Aschoff T, Spiecker H (2004) Algorithms for the automatic detection of trees in laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI, part 8/W2:71–75
Bienert A, Maas H-G, Scheller S (2006a) Analysis of the information content of terrestrial laserscanner point clouds for the automatic determination of forest inventory parameters. ISPRS WG VIII/11 & EARSeL joint Conference ‘3D Remote Sensing in Forestry’, Vienna, Austria, 14–15 February
Bienert A, Scheller S, Keane E, Mullooly G, Mohan F (2006b) Application of terrestrial laser scanners for the determination of forest inventory parameters. In: Maas H-G, Schneider D (eds) Proceedings of ISPRS commission V symposium ‘Image engineering and vision metrology’, ISPRS, Dresden, Germany, 25–27 September
Bienert A, Scheller S, Keane E, Mohan F, Nugent C (2007) Tree detection and diameter estimations by analysis of forest terrestrial laser scanner point clouds. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, pp 50–55, 12–14 September 2007
Blair JB, Rabine DL, Hofton MA (1999) The laser vegetation imaging sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J Photogramm Remote Sens 54:115–122
Boudon F, Godin C, Pradal C, Puech O, Sinoquet H (2006) Estimating the fractal dimension of plants using the two-surface method: an analysis based on 3D digitized tree foliage. Fractals 14:149–163
Brandtberg T, Warner TA, Landenberger RE, McGraw JB (2003) Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens Environ 85:290–303
Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S (2010) Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens Environ 114:911–924
Brolly G, Király G (2009) Algorithms for stem mapping by means of terrestrial laser scanning. Acta Silv Lignaria Hung 5:119–130
Bucksch A, Fleck S (2009) Automated detection of branch dimensions in woody skeletons of leafless fruit tree canopies. SilviLaser 2009, Austin, Oct 14–16
Bucksch A, Lindenbergh R (2008) CAMPINO—a skeletonization method for point cloud processing. ISPRS J Photogramm Remote Sens 63:115–127
Chen Q, Baldocchi D, Gong P, Kelly M (2006) Isolating individual trees in a savanna woodland using small footprint lidar data. Photogramm Eng Remote Sens 72:923–932
Coops NC, Hilker T, Wulder M, St-Onge B, Newnham G, Siggins A, Trofymow JA (2007) Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees 21:295–310
Côté J, Widlowski J, Fournier RA, Verstraete MM (2009) The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens Environ 113:1067–1081
Danson FM, Hetherington D, Morsdorf F, Koetz B, Allgöwer B (2007) Forest canopy gap fraction from terrestrial laser scanning. IEEE Geosci Remote Sens Lett 4:157–160
Donoghue DNM, Watt PJ, Cox NJ, Wilson J (2007) Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. Remote Sens Environ 110:509–522
Drake JB, Weishampel JF (2000) Multifractal analysis of canopy height measures in a longleaf pine savanna. For Ecol Manag 128:121–127
Drake JB, Dubayah RO, Clark DB, Knox RG, Blair B, Hofton MA, Chazdon RL, Weishampel JF, Prince SD (2002) Estimation of tropical forest structural characteristics using large-footprint LiDAR. Remote Sens Environ 79:305–319
Flamant PH (2005) Atmospheric and meteorological LiDAR: from pioneers to space applications. Comptes Rendus Phys 6:864–875
Fleck S, Van der Zande D, Schmidt M, Coppin P (2004) Reconstructions of tree structures from laser-scans and their use to predict physiological properties and processes in canopies. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:118–123
Fleck S, Obertreiber N, Schmidt I, Brauns M, Jungkunst HF, Leuschner C (2007) Terrestrial LiDAR measurements for analysing canopy structure in an old-growth forest. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 3/W52:125–129
Fröhlich Z, Mettenleiter M (2004) Terrestrial laser scanning—new perspectives in 3D surveying. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:7–13
Gaveau DLA, Hill RA (2003) Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Can J Remote Sens 29:650–657
Gitelson AA (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol 161:165–173
Goodwin NR, Coops NC, Culvenor DS (2006) Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sens Environ 103:140–152
Gorte B, Winterhalder D (2004) Reconstruction of laser-scanned trees using filter operations in the 3D raster domain. Int Arch Photogramm, Remote Sens Spat Inf Sci XXXVI part 8/W2: 39–44
Gougeon FA (2005) The individual tree crown (ITC) suite. Canadian Forest Service, Victoria
Green AA, Berman P, Switzer P, Craig MD (1988) A transform for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74
Harding DJ, Carabajal CC (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys Res Lett 32:L21s10
Henning JG, Radtke PJ (2006) Detailed stem measurements of standing trees from ground-based scanning LiDAR. For Sci 52:67–80
Heurich M (2008) Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park. For Ecol Manag 255:2416–2433
Hilker T, Wulder MA, Coops NC (2008) Update of forest inventory data with LiDAR and high spatial resolution satellite imagery. Can J Remote Sens 34:5–12
Holmgren J, Persson Å (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423
Holmgren J, Nilsson M, Olsson H (2003) Estimation of tree height and stem volume on plots using airborne laser scanning. For Sci 49:419–428
Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest metrics with a ground-based scanning LiDAR. Can J Remote Sens 34:573–583
Hough PVC (1962) Method and means for recognizing complex patterns. US Patent 3,069,654
Hug C, Ullrich A, Grimm A (2004) Litemapper-5600—a waveform-digitizing LiDAR terrain and vegetation mapping system. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2: 24–29
Jupp DLB, Culvenor DS, Lovell JL, Newnham GJ, Strahler AH, Woodcock CE (2009) Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna®’. Tree Physiol 29:171–181
Kalliovirta J, Laasasenaho J, Kangas A (2005) Evaluation of the laser-relascope. For Ecol Manag 204:181–194
Kato A, Moskal LM, Schiess P, Swanson ME, Calhoun D, Stuetzle W (2009) Capturing tree crown formation through implicit surface reconstruction using airborne lidar data. Remote Sens Environ 113:1148–1162
Király G, Brolly G (2007) Tree height estimation methods for terrestrial laser scanning in a forest reserve. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 3/W52:211–215
Kirchhof M, Jutzi B, Stilla U (2008) Iterative processing of laser scanning data by full waveform analysis. ISPRS J Photogramm Remote Sens 63:99–114
Koetz B, Sun G, Morsdorf F, Ranson KJ, Kneubühler M, Itten K, Allgöwer B (2007) Fusion of imaging spectrometer and LiDAR data over combined radiative transfer models for forest canopy characterization. Remote Sens Environ 106:449–459
Kumar L, Schmidt K, Dury S, Skidmore A (2002) Imaging spectrometry and vegetation science. In: Van der Meer FD, De Jong SM (eds) Imaging spectrometry. Springer, Netherlands, pp 111–156
Leckie D, Gougeon F, Hill D, Quinn R, Armstrong L, Shreenan R (2003) Combined high-density LiDAR and multispectral imagery for individual tree crown analysis. Can J Remote Sens 29:633–649
Lee AC, Lucas RM (2007) A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests. Remote Sens Environ 111:493–518
Lefsky M, Harding DJ, Cohen WB, Parker GG, Shugart HH (1999) Surface LiDAR remote sensing of basal area and biomass in deciduous forests of eastern maryland, USA. Remote Sens Environ 67:83–98
Lefsky MA, Cohen WB, Spies TA (2001) An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forest in Western Oregon. Can J Remote Sens 31:78–87
Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Espirito-Santo FDB, Hunter MO, de Oliveira JR (2005a) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32:L22S02
Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005b) Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95:532–548
Lefsky M, Keller M, Pang Y, de Camargo PB, Hunter MO (2007) Revised method for forest canopy height estimation from geoscience laser altimeter system waveforms. J Appl Remote Sens 1:013537
Liang X, Litkey P, Hyyppä J, Kukko A, Kaartinen H, Holopainen M (2008) Plot-level trunk detection and reconstruction using one-scan-mode terrestrial laser scanning data. 2008 International workshop on earth observation and remote sensing applications, IEEE, Beijing, 30 June–2 July
Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. Wiley, Hoboken, NJ
Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 27:88–106
Lindenmayer DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950
Lovell JL, Jupp DLB, Newnham GJ, Coops NC, Culvenor DS (2005) Simulation study for finding optimal LiDAR acquisition parameters for forest height retrieval. For Ecol Manag 214:398–412
Maas H-G, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens 29:1579–1593
MacArthur RH, Horn HS (1969) Foliage profile by vertical measurements. Ecol 50:802–804
Maltamo M, Eerikäinen K, Pitkänen J, Hyppä J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330
McCombs JW, Roberts SD, Evans DL (2003) Influence of fusing LiDAR and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation. For Sci 49:457–466
Middleton WEK, Spilhaus AF (1953) Meteorological instruments. University of Toronto Press, Toronto
Moorthy I, Miller JR, Hu B, Chen J, Li Q (2008) Retrieving crown leaf area index from an individual tree using ground-based lidar data. Can J Remote Sens 34:320–332
Morsdorf F, Meier E, Koetz B, Itten KI, Dobbertin M, Allgöwer B (2004) LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens Environ 92:353–362
Morsdorf F, Koetz B, Meier E, Itten KI, Allgöwer B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61
Morsdorf F, Frey O, Meier E, Itten KI, Allgöwer B (2008) Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning. Int J Remote Sens 29:1387–1406
Morsdorf F, Nichol C, Malthus T, Woodhouse IH (2009) Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote Sens Environ 113:2152–2163
Murphy G (2008) Determining stand value and log product yields using terrestrial lidar and optimal bucking: a case study. J For 106:317–324
Myneni R, Nemani R, Running S (1997) Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans Geosci Remote Sens 35:1380–1393
Næsset E (2009a) Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 113:148–159
Næsset E (2009b) Influence of terrain model smoothing and flight and sensor configurations on detection of small pioneer trees in the boreal-alpine transition zone utilizing height metrics derived from airborne scanning lasers. Remote Sens Environ 113:2210–2223
Næsset E, Gobakken T (2008) Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ 112:3079–3090
Næsset E, Økland T (2002) Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens Environ 79:105–115
Næsset E, Bollandsås OM, Gobakken T (2005) Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sens Environ 94:541–553
Nelson RF (2008) Model effects on GLAS-based regional estimates of forest biomass and carbon. SilviLaser 2008, 17–19 September, Edinburgh, pp 207–215
Nelson R, Jimenez J, Schnell CE, Hartshorn GS, Gregoire TG, Oderwald R (2000) Canopy height models and airborne lasers to estimate forest biomass: two problems. Int J Remote Sens 21:2153–2162
Noss RF (1999) Assessing and monitoring forest biodiversity: a suggested framework and indicators. For Ecol Manag 115:135–146
Ørka HO, Næsset E, Bollandsås OM (2009) Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens Environ 113:1163–1174
Parker GG, Harding DJ, Berger ML (2004) A portable LiDAR system for rapid determination of forest canopy structure. J Appl Ecol 41:755–767
Parkes D, Newell G, Cheal D (2003) Assessing the quality of native vegetation: the ‘habitat hectares’ approach. Ecol Manag Restor 4(supplement):s29–s38
Pfeifer N, Briese C (2007) Geometrical aspects of airborne and terrestrial laser scanning. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 3/W52: 311–319
Pfeifer N, Winterhalder D (2004) Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2: 76–81
Popescu S, Wynne RH (2004) Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm Eng Remote Sens 70:589–604
Popescu SC, Wynne RH, Nelson RF (2002) Estimating plot-level tree heights with LiDAR: local filtering with a canopy-height based variable window size. Comput Electron Agric 37:71–95
Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577
Rahman MZA, Gorte BGH (2009) Tree crown delineation from high resolution airborne lidar based on densities of high points. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII part 3/W8:123–128
Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004a) Landcover attributes from ICESat GLAS data in central Siberia. In: Proceedings of international geoscience and remote sensing symposium 2004, 20–24 September. IEEE International, Anchorage, pp 753–756
Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004b) Use of ICESat GLAS data for forest disturbance studies in central Siberia. In: Proceedings of international geoscience and remote sensing symposium 2004, 20–24 September. IEEE International, Anchorage, pp 1936–1939
Ranson KJ, Kimes D, Sun G, Nelson R, Kharuk V, Montesano P (2007) Using MODIS and GLAS data to develop timber volume estimates in central Siberia. In: International Conference on Geoscience and Remote Sensing Symposium 2007, 23–28 July. IEEE, Barcelona, pp 2306–2309
Reese H, Nilsson M, Sandström P, Olsson H (2002) Applications using estimates of forest parameters derived from satellite and forest inventory data. Comput Electron Agric 37:37–55
Reitberger J, Krzystek P, Stilla U (2008) Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int J Remote Sens 29:1407–1431
Reitberger J, Schnörr C, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64:561–574
Riaño D, Meier E, Allgoewer B, Chuvieco E, Ustin SL (2003) Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sens Environ 86:177–186
Ritchie JC (1996) Remote sensing applications to hydrology: airborne laser altimeters. Hydrol Sci J 41:625–636
Roberts G (1998) Simulating the vegetation canopy LiDAR: an investigation of the waveform information content. Masters, University College London, London
Roberts JW, Tesfamichael S, Gebreslasie M, Van Aardt J, Ahmed FB (2007) Forest structural assessment using remote sensing technologies: an overview of the current state of the art. South Hemisph For J 69:183–203
Rosette JAB, North PRJ, Suárez JC (2008) Vegetation height estimates for a mixed temperate forest using satellite laser altimetry. Int J Remote Sens 29:1475–1493
Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K (2008) Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography. Landsc Ecol Eng 4:47–55
Schaepman ME (2007) Spectrodirectional remote sensing: from pixels to processes. Int J Appl Earth Obs Geoinf 9:204–223
Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905
Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR (2008) A systematic method for 3D mapping of mangrove forests based on shuttle radar topography mission elevation data, ICEsat/GLAS waveforms and field data: application to Ciénaga Grande de Santa Marta, Colombia. Remote Sens Environ 112:2131–2144
Smith B, Knorr W, Widlowski J-L, Pinty B, Gobron N (2008) Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances. For Ecol Manag 255:3985–3994
St-Onge B, Vega C, Fournier RA, Hu Y (2008) Mapping canopy height using a combination of digital stereo-photogrammetry and LiDAR. Int J Remote Sens 29:3343–3364
Strahler AH, Jupp DLB, Woodcock CE, Schaaf CB, Yao T, Zhao F, Yang X, Lovell J, Culvenor D, Newnham G, Ni-Miester W, Boykin-Morris W (2008) Retrieval of forest structural parameters using a ground-based lidar instrument ‘Echidna®’. Can J Remote Sens 34:S426–S440
Sun G, Ranson KJ, Kimes DS, Blair JB, Kovacs K (2008) Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data. Remote Sens Environ 112:107–117
Takahashi T, Kazukiyo Y, Senda Y, Tsuzuku M (2005) Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J For Res 10:135–142
Tansey K, Selmes N, Anstee A, Tate NJ, Denniss A (2009) Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. Int J Remote Sens 30:5195–5209
Teobaldelli M, Zenone T, Puig D, Matteucci M, Seufert G, Sequeira V (2007) Structural tree modelling of aboveground and belowground poplar tree using direct and indirect measurements: terrestrial laser scanning, WGROGRA, AMAPmod and JRC-3D Reconstructor®. Functional Structural Plant Models, Napier, New Zealand, November 4–9
Thies M, Spiecker H (2004) Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:192–197
Thies M, Pfeifer N, Winterhalder D, Gorte BGH (2004) Three-dimensional reconstruction of stems for assessment of taper, sweep, and lean based on laser scanning of standing trees. Scand J For Res 19:571–581
Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314
Van Leeuwen M, Coops NC, Wulder MA (2010) Canopy surface reconstruction from a LiDAR point cloud using hough transform. Remote Sens Lett 1:125–132
Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J Photogramm Remote Sens 60:100–112
Wagner W, Hollaus M, Briese C, Ducic V (2008) 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. Int J Remote Sens 29:1433–1452
Watt PJ, Donoghue DNM (2005) Measuring forest structure with terrestrial laser scanning. Int J Remote Sens 26:1437–1446
Wehr A, Lohr U (1999) Airborne laser scanning—an introduction and overview. ISPRS J Photogramm Remote Sens 54:68–82
Weinacker H, Koch B, Heyder U, Weinacker R (2004) Development of filtering, segmentation and modelling modules for LIDAR and multispectral data as a fundament of an automatic forest inventory system. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:50–55
Wezyk P, Tompalski P, Szostak M, Glista M, Pierzchalski M (2008) Describing the selected canopy layer parameters of the Scots pine stands using ALS data. SilviLaser 2008, Edinburgh, Sept 17–19
Wulder MA, Bater CW, Coops NC, Hilker T, White JC (2008) The role of LiDAR in sustainable forest management. For Chron 84:807–826
Xu H, Gossett N, Chen B (2007) Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans Graph 26:19:1–19:13
Yong G, Zengyuan L, Sun G, Lefsky M, Xinfang Y (2006) Model based terrain effect analyses on ICEsat GLAS waveforms. In: Proceedings of IEEE international conference on geoscience remote sensing symposium 2006, 31 July–4 Aug. IEEE, Denver, pp 3232–3235
Yu X, Hyppä J, Hyppä H, Maltamo M (2004) Effects of flight altitude on tree height estimation using airborne laser-scanning. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI part 8/W2:96–101
Yu X, Hyyppä J, Kaartinen H, Maltamo M, Hyyppä H (2008) Obtaining plotwise mean height and volume growth in boreal forests using multi-temporal laser surveys and various change detection techniques. Int J Remote Sens 29:1367–1386
Zhao K, Popescu S (2009) Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens Environ 113:1628–1645
Zhao K, Popescu S, Nelson R (2009) LiDAR remote sensing of forest biomass: a scale invariant estimation approach using airborne lasers. Remote Sens Environ 113:182–196
Zimble DA, Evans DL, Carlson GC, Parker RC, Grado SC, Gerard PD (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens Environ 87:171–182
Acknowledgments
We would like to thank COFORD (the Irish National Council for Forest Research and Development) for funding the FORESTSCAN project, through which this research was made possible, and two anonymous reviewers for their constructive feedback.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. Müller.
Rights and permissions
About this article
Cite this article
van Leeuwen, M., Nieuwenhuis, M. Retrieval of forest structural parameters using LiDAR remote sensing. Eur J Forest Res 129, 749–770 (2010). https://doi.org/10.1007/s10342-010-0381-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10342-010-0381-4