Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review | European Journal of Forest Research Skip to main content
Log in

Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review

  • Review
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

An Erratum to this article was published on 02 February 2006

Abstract

The intensive monitoring plots (Level II) of ICP Forests serve to examine the effects of air pollution and other stress factors on forest condition, including tree vitality. However, tree vitality cannot be measured directly. Indicators, such as tree growth or crown transparency, may instead be used.

Tree growth processes can be ranked by order of importance in foliage growth, root growth, bud growth, storage tissue growth, stem growth, growth of defence compounds and reproductive growth. Under stress photosynthesis is reduced and carbon allocation is altered. Stem growth may be reduced early on as it is not directly vital to the tree.

Actual growth must be compared against a reference growth, such as the growth of trees without the presumed stress, the growth of presumed healthy trees, the growth in a presumed stress-free period or the expected growth derived from models.

Several examples from intensive monitoring plots in Switzerland illustrate how tree-growth reactions to environmental stresses may serve as vitality indicator. Crown transparency and growth can complement each other. For example, defoliation by insects becomes first visible in crown transparency while stem growth reaction occurs with delay. On the other hand, extreme summer drought as observed in large parts of Europe in 2003 affects stem growth almost immediately, while foliage reduction becomes only visible months later.

Residuals of tree growth models may also serve as indicators of changed environmental conditions. Certain stresses, such as drought or insect defoliation cause immediate reactions and are not detectable in five-year growth intervals. Therefore, annual or inter-annual stem growth should be assessed in long-term monitoring plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeles AL, Abeles FB (1972) Biochemical Pathway of stress-induced ethylene. Plant Physiol 50:496–498

    Article  PubMed  CAS  Google Scholar 

  • American Heritage College Dictionary (1993) 3rd ed., Houghton Millton Company, Boston, New York

  • Baier P, Fuhrer E, Kirisits T, Rosner S (2002) Defence reactions of Norway spruce against bark beetles and the associated fungus Ceratocystis polonica in secondary pure and mixed species stands. For Ecol Manage 159:73–86

    Article  Google Scholar 

  • Baltensweiler W (1975) Zur Bedeutung des grauen Lärchenwicklers (Zeiraphera diniana Gn.) für die Lebensgemeinschaft des Lärchen-Arvenwaldes. Mitt Schweiz Entomolog Ges 50:15–23

    Google Scholar 

  • Baltensweiler W (1993) Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850. Oecologia 1:62–66

    Article  Google Scholar 

  • Baltensweiler W, Rubli D (1999) Dispersal: an important driving force of the cyclic population dynamics of the larch bud moth, Zeiraphera diniana Gn. For Snow Landsc Res 74:3–153

    Google Scholar 

  • Bayerische Landesanstalt für Wald und Forstwirtschaft (2004) Waldzustandsbericht 2004. Bayerisches Staatsministerium für Landwirtschaft und Forsten, Bayerische Landesanstalt für Wald und Forstwirtschaft LWF

  • Becker M, Bräker OU, Kenk G, Schneider O, Schweingruber FH (1990) Kronenzustand und Wachstum von Waldbäumen im Dreiländereck Deutschland-Frankreich-Schweiz in den letzten Jahrenzehnten. Allg Forstz 45:263–266, 272–274

    Google Scholar 

  • Biging GS, Dobbertin M (1995) Evaluation of competition indices in individual-tree growth models. For Sci 41:360–377

    Google Scholar 

  • Biging GS, Dobbertin M (1992) A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For Sci 38:695–720

    Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2005) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems (in press)

  • Bigler C, Bugmann H (2003) Growth-dependent tree mortality models based on tree rings. Can J For Res 33:210–221

    Article  Google Scholar 

  • Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–914

    Google Scholar 

  • Bigler C, Gricar J, Bugmann H, Cufar K (2004) Growth patterns as indicators of impending tree death in silver fir. For Ecol Manage 199:183–190

    Google Scholar 

  • Björkdahl G, Eriksson H (1989) Effects of crown decline on increment in Norway spruce (Picea abies (L.) Karst) in Southern Sweden. In: Brække H, Bjor K, Halvorsen B (eds) Air pollution as stress factor in the Nordic forests. Communications of the Norwegian Forest Research 42:19–36

    Google Scholar 

  • Bossel H (1986) Dynamics of forest dieback: systems analysis and simulation. Ecol Model 34:259–288

    Article  CAS  Google Scholar 

  • Brang P (eds) (1998) Sanasilva-Bericht 1997. Gesundheit und Gefährdung des Schweizer Waldes - eine Zwischenbilanz nach 15 Jahren Waldschadenforschung. Berichte der Eidg. Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf

  • Broadmeadow MSJ, Jackson SB (2000) Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytologist 146:437–451

    Article  CAS  Google Scholar 

  • Brunner I, Brodbeck S, Walthert L (2002) Fine root chemistry, starch concentration, and ‘vitality’ of subalpine conifer forests in relation to soil pH. For Ecol Manage 165:75–84

    Article  Google Scholar 

  • Burkman W.G, Hertel GD (1992) Forest Health Monitoring – A national program to detect, evaluate, and understand change. J For 90:27–28

    Google Scholar 

  • Calder M, Bernhardt P (eds) (1983) The Biology of Mistletoes, Academic Press, Sydney New York London Paris San Diego San Francisco Sao Paolo Tokyo Toronto

  • Ceulemans R, Jach ME, Van de Velde R, Lin JX, Stevens M (2002) Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L) after three years of enrichment. Glob Chang Biol 8:153–162

    Article  Google Scholar 

  • Cherubini P, Fontana G, Rigling D, Dobbertin M, Brang P, Innes JL (2002) Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. J Ecol 90:839–850

    Article  Google Scholar 

  • Clemenssonlindell A, Persson H (1995a) Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies. Plant Soil 169:167–172

    Google Scholar 

  • Clemenssonlindell A, Persson H (1995b) The effects of nitrogen addition and removal on Norway spruce fine-root vitality and distribution in 3 catchment areas at Gardsjon. For Ecol Manage 71:123–131

    Article  Google Scholar 

  • de Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003a) Intensive monitoring of forest ecosystems in Europe - 1. Objectives, set-up and evaluation strategy. For Ecol Manage 174:77–95

    Article  Google Scholar 

  • de Vries W, Reinds GJ, Vel E (2003b) Intensive monitoring of forest ecosystems in Europe-2: Atmospheric deposition and its impacts on soil solution chemistry. For Ecol Manage 174:97–115

    Article  Google Scholar 

  • de Vries W, Reinds GJ, Posch M, Sanz MJ, Kruase GHM, Calatayud V, Renaud JP, Dupouey JL, Sterba H, Vel, EM, Dobbertin M, Gundersen P, Voogd JCH (2003c) Intensive Monitoring of Forest Ecosystems in Europe, Technical Report 2003 ,UN/ECE and EC Forest Intensive Monitoring Coordinating Institute, Geneva, Brussels

  • de Vries W, Klap JM, Erisman JW (2000) Effects of environmental stress on forest crown condition in Europe. Part I: Hypotheses and approach to the study. Water Air Soil Poll 119:317–333

    Article  Google Scholar 

  • Dobbertin M (ed) (2004) Estimation of Growth and Yield. In: UNECE, Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Federal Research Centre for Forestry and Forest Products, Hamburg

  • Dobbertin M (2002) Influence of stand structure and site factors on wind damage - Comparing the storms “Vivian” and “Lothar”. For Snow Landsc Res 77:187–205

    Google Scholar 

  • Dobbertin M (2000) Forest Growth. In: Haußmann T, Lorenz M, Fischer R (eds). Internal Review of ICP Forests. UN/ECE, 2000, Fed. Res. Centre for Forestry and Forest Products pp 84–102

  • Dobbertin M (1996) Relationship between basal area increment, tree crown defoliation, and tree and site variables. In: Proceedings, IUFRO Conference on Effects of environmental factors on tree and stand growth, Berggiesshübel near Dresden, September 23–27, 1996. Dresden, Technische Universität, pp. 33–44

  • Dobbertin M, Baltensweiler A, Rigling D (2001) Tree mortality in a mountain pine (Pinus mugo var. uncinata) stand in the Swiss National Park impacted by root rot fungi. For Ecol Manage 145:79–89

    Article  Google Scholar 

  • Dobbertin M, Biging GS (1998) Using the non-parametric classifier CART to model forest tree mortality. For Sci 44:507–516

    Google Scholar 

  • Dobbertin M, Brang P (2001) Crown defoliation improves tree mortality models. For Ecol Manage 141:271–284

    Article  Google Scholar 

  • Dobbertin M, Hilker N, Rebetez M, Wohlgemuth T, Zimmermann NE, Rigling A (2005) The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland – a result of climate warming? Int J Biometeorol 50:40–47

    Article  PubMed  Google Scholar 

  • Dobbertin M, Landmann G, Pierrat JC, Müller-Edzards C (1997) Quality of crown condition data. In: Müller-Edzards C, De Vries W, Erisman JW (eds), Ten years of monitoring forest condition in Europe. Studies on temporal development, spatial distribution and impacts of natural and anthropogenic stress factors. Technical background report. Geneva and Brussels, United Nations Economic Commission for Europe / European Commission pp. 7–22

  • Dong PH, Kramer H (1987) Zuwachsverlust in erkrankten Fichtenbeständen. Allg Forst- Jagdztg 158:122–125

    Google Scholar 

  • Dursky J (1997) Modelling mortality in mixed spruce-beech stands. Allg Forst- Jagdztg 168:131–134

    Google Scholar 

  • Eckmüllner O, Halbwachs G, Schön B, Sterba H (1988) Vergleich von verschiedenen objektiv bestimmten Benadelungsmerkmalen und Schadklassenansprache bei Fichte. In: Führer E, Neuhuber F (eds) Waldsterben in Österreich: Theorien, Tendenzen, Therapien. FIW-Symposium, Wien, pp 259–260

    Google Scholar 

  • Eckmüllner O, Sterba H (2000) Crown condition, needle mass, and sapwood area relationships of Norway spruce (Picea abies). Can J For Res 30:1646–1656

    Article  Google Scholar 

  • EFI (2002) Nitrogen deposition appears to be the main cause of increased forest growth in Europe. Press Release

  • Eichhorn J, Szepesi A, Ferretti M, Durrant D, Roskams P (2004), Visual Assessment of Crown Condition. In: UN/ECE, Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Federal Research Centre for Forestry and Forest Products, Hamburg

  • Eichkorn T (1986) Wachstumsanalysen an Fichten in Südwestdeutschland. Allg Forst- Jagdztg 157:125–139

    Google Scholar 

  • Ellenberg H (1994) Blatt- und Nadelverlust oder standörtlich wechselnde Ausbildung des Photosynthese-Apparats? Fragen zum Waldschadenbericht 1992. Schweiz. Z. Forstwes. 145:413–416

    Google Scholar 

  • Filip GM, Wickman BE, Mason RR, Parks CA, Hosman KP (1992) Thinning and nitrogen-fertilization in a grand fir stand infested with western spruce budworm. 3. Tree wound dynamics. For Sci 38:265–274

    Google Scholar 

  • Fischer JT (1983) Water relations of Mistletoes and their hosts. In: Calder M, Bernhard T (eds) The biology of Mistletoes. Academic Press, Sydney, pp 163–184

    Google Scholar 

  • Flückiger W, Braun S (1995) Revitalization of an alpine protective forest by fertilization. Plant Soil 169:481–488

    Google Scholar 

  • Gehrig M (2004) Methoden zur Vitalitätsbeurteilung von Bäumen. Vergleichende Untersuchungen mit visuellen, nadelanalytischen und bioelektrischen Verfahren. Diss. No. 15341, ETH Zürich

  • Goldstein AH, Gensler W (1981) A physiological basis for electrophytograms. Bioelectrochemistry Bioenergetics 8:645–659

    Article  CAS  Google Scholar 

  • Grill D, Tausz M, Pollinger U, Jimenez MS, Morales D (2004) Effects of drought on needle anatomy of Pinus canariensis. Flora 199:85–89

    Google Scholar 

  • Hall JP (1995) Forest health monitoring in Canada: how healthy is the boreal forest? Water Air Soil Pollut 82:77–85

    Article  CAS  Google Scholar 

  • Hattenschwiler S, Miglietta F, Raschi A, Korner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob Chang Biol 3:463–471

    Article  Google Scholar 

  • Innes JL (1993) Forest health: its assessment and status. Wallingford, Oxon, UK: CAB International

  • Janssens IA, Medlyn B, Gielen B, Laureysens I, Jach ME, Van Hove D, Ceulemans R (2005) Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Tree Physiol 25:325–337

    PubMed  Google Scholar 

  • Jolly M, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent growth responses of Alpine forests to 2003 heat wave. Geophys Res Lett 32, L18409, doi:10.1029/2005GL023252

  • Jonsson AM, Rosengren U, Nihlgard B (2004) Excess nitrogen affects the frost sensitivity of the inner bark of Norway spruce. Ann For Sci 61:293–298

    Article  CAS  Google Scholar 

  • Joos K, (1997) Untersuchung der Zusammenhänge zwischen Nadeldichte, Zuwachsleistung und Nährstoffversorgung bei der Fichte unter besonderer Berücksichtigung des Ionentransportes im Splintsaft. Diss. ETH, No. 12117, ETH Zürich

  • Juknys R, Stravinskiene V, Venecloviene J (2002) Tree-ring analysis for the assessment of anthropogenic changes and trends. Environ Monit Assess 77:81–97

    Article  PubMed  Google Scholar 

  • Kahle, HP (2005) Impacts of the drought and heat 2003 on forest growth. Submitted to Ann For Sci

  • Kenk G (1983) Zuwachsuntersuchungen in geschädigten Tannenbeständen in Baden-Württemberg. Allg Forstztg 38:650–652

    Google Scholar 

  • Klap JM, Voshaar JHO, De Vries W, Erisman JW (2000) Effects of environmental stress on forest crown condition in Europe. Part IV: Statistical analysis of relationships.Water Air Soil Poll 119:387–420

    Article  CAS  Google Scholar 

  • König A (1995) Sturmgefährdung von Beständen im Altersklassenwald. Ein Erklärungs- und Prognosemodell. Diss. Univ. München, Sauerländer’s Verl., Frankfurt am Main

  • Kozlov MV, Niemela P (1999). Difference in needle length - A new and objective indicator of pollution impact on Scots pine (Pinus sylvestris). Water Air Soil Pollut 116:365–370

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (1996) Physiology of woody plants. 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Google Scholar 

  • Kramer H, Dong PH (1985) Kronenanalyse für Zuwachsuntersuchungen in immissionsgeschädigten Nadelholzbeständen. Forst- Holzwirt 40:115–118

    Google Scholar 

  • Krause C, Gionest F, Morin H, MacLean DA (2003) Temporal relations between defoliation caused by spruce budworm (Choristoneura fumiferana Clem.) and growth of balsam fir (Abies balsamea (L.) Mill.). Dendrochronologia 21:23–31

    Article  Google Scholar 

  • Kucera LJ (1986) Kernspintomographie und elektrische Widerstandsmessung als Diagnosemethode der Vitalität erkrankter Bäume. Schweiz Z Forstwes 137:673–690

    Google Scholar 

  • Kulman HM (1971) Effects of insect defoliation on growth and mortality of trees. Annual Rev Entomol 16:289–324

    Article  Google Scholar 

  • Larcher W (2001) Ökophysiologyie der Pflanzen. Ulmer Verlag, Stuttgart, 6. Auflage

  • Lewinsohn E, Gijzen M, Croteau R (1991) Defense-mechanisms of conifers. Differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiol. 96:44–49

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. J Plant Physiol 148:4–14

    Google Scholar 

  • Lof M, Welander NT (2000) Carry-over effects on growth and transpiration in Fagus sylvatica seedlings after drought at various stages of development. Can J For Res 30:468–475

    Article  Google Scholar 

  • Lorenz M, Becher G, Mues V, Fischer R, Ulrich E, Dobbertin M, Stofer S (2004) Forest Condition in Europe – 2004 Technical Report. UN/ECE, Geneva

    Google Scholar 

  • Lorenz M, Eckstein D (1988) Wachstumsreaktionen von Einzelbäumen in Douglasien-, Fichten- und Kiefernbeständen in norddeutschen Waldschadensgebieten. Forst- Holz 43:8–12

    Google Scholar 

  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28

    Article  Google Scholar 

  • Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7:402–415

    Google Scholar 

  • Maguire DA, Kanaskie A (2002) The ratio of live crown length to sapwood area as a measure of crown sparseness. For Sci 48:93–100

    Google Scholar 

  • Manion PD (1981) Tree disease concepts. Englewood Cliffs, Prentice Hall, New Jersey, USA

    Google Scholar 

  • Meining S, Schröter H, v. Wilpert K (2004) Waldzustandsbericht 2004. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg

    Google Scholar 

  • Merriam-Webtser’s Collegiate Dictionary (1994) 10th. Ed. Merriam-Webtser, Incorporated, Springfield, Massachusetts, USA

  • Mitscherlich G (1978) Wald, Wachstum und Umwelt, vol. 1. J.D. Sauerländer’s Verlag, Frankfurt am Main, 2nd ed

  • Monserud RA, Sterba H (1999) Modeling individual tree mortality for Austrian forest species. For Ecol Manage 113:109–123

    Article  Google Scholar 

  • Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For Ecol Manage 80:57–80

    Article  Google Scholar 

  • Müller-Edzards C, De Vries W, Erisman JW (eds) (1997) Ten Years of Monitoring Forest Condition in Europe. Studies on Temporal Development, Spatial Distribution and Impacts of Natural and Anthropogenic Stress Factors. UN/ECE, ICP Forests, Technical Background Report. Brussels, Geneva

  • Neumann M, Stemberger A (1990) Über Ausmass und Verteilung der Mortalität: Gegenüberstellung von Ergebnissen der Waldzustandsinventur mit früheren Untersuchungen. Forstwiss Centralbl 107:63–99

    Google Scholar 

  • Nötzli KP, Müller B, Sieber TN (2003) Impact of population dynamics of white mistletoe (Viscum album ssp. abietis) on European silver fir (Abies alba). Ann For Sci 60:773–779

    Article  Google Scholar 

  • Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng WX, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appl 12:1261–1266

    Google Scholar 

  • Pedersen BS. (1998a) Modelling tree mortality in response to short- and long-term environmental stresses. Ecol Modelling 105:347–351

    Article  Google Scholar 

  • Pedersen BS. (1998b) The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death. Ecology 79:79–93

    Article  Google Scholar 

  • Persson H, Ahlstrom K (2002) Fine-root response to nitrogen supply in nitrogen manipulated Norway spruce catchment areas. For Ecol Manage 168:29–41

    Article  Google Scholar 

  • Pretzsch H (1985) Wachstumsmerkmale Oberpfälzer Kiefernbestände in den letzten 30 Jahren. Vitalitätszustand, Strukturverhältnisse - Zuwachsgang. Allg Forstztg 42:1122–1126

    Google Scholar 

  • Pretzsch H (1992) Zunehmende Unstimmigkeit zwischen erwartetem und wirklichem Wachstum unserer Waldbestände. Forstwiss Centralbl. 111:366–382

    Google Scholar 

  • Proe MF, Dutch J, Miller HG, Sutherland J (1992) Long-term partitioning of biomass and nitrogen following application of nitrogen-fertilizer to Corsican pine. Can J For Res 22:82–87

    Article  CAS  Google Scholar 

  • Raison RJ, Myers BJ, Benson ML (1992) Dynamics of Pinus radiata foliage in relation to water and nitrogen Stress. 1. Needle production and properties. For Ecol Manage 52:139–158

    Article  Google Scholar 

  • Random House Webster’s College Dictionary (1992), Random House, New York

  • Rasmussen L, Beier C, Bergstedt A (2002) Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate. For Ecol Manage 158:179–188

    Article  Google Scholar 

  • Riikonen J, Lindsberg MM, Holopainen T, Oksanen E, Lappi J, Peltonen P, Vapaavuori E (2004) Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiol 24:1227–1237

    PubMed  CAS  Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9

    Article  Google Scholar 

  • Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121

    Article  Google Scholar 

  • Rigling A, Brühlhart H, Bräker OU, Forster T, Schweingruber FH (2003) Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For Ecol Manage 175:285–296

    Article  Google Scholar 

  • Rolland C, Baltensweiler W, Petitcolas V (2001) The potential for using Larix decidua ring widths in reconstructions of larch budmoth (Zeiraphera diniana) outbreak history: dendrochronological estimates compared with insect surveys. Trees 15:414–424

    Article  Google Scholar 

  • Roloff A (1987) Morphology of crown development of Fagus sylvatica L. (beech) in consideration of new modifications. 1. Morphogenetic cycle, abnormalities specific to proleptic shoots and leaf fall. Flora 179:355–378

    Google Scholar 

  • Rosso P, Hansen E (1998) Tree vigour and the susceptibility of Douglas fir to Armillaria root. Eur J For Pathol 28:43–52

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Haas P (1993) Kronenverlichtung und Sterberaten bei Fichten, Tannen und Buchen. Forstwiss Centralbl 112:325–333

    Google Scholar 

  • Schmid-Haas P, Baumann E, Holdenrieder O, Keller W, Ramp B, Sepien E (1997) Infektionen der Stützwurzeln, Kronenverlichtung und Zuwachs bei Fichten und Tannen. Mitt. Eidg. Forschungsanstalt WSL 72, Birmensdorf

  • Schmidt W, Schneckenburger H (1992) Time-resolving luminescence techniques for possible detection of forest decline: I. Long term delayed luminescence. Radiation and Environ Biophys 31:63–72

    Article  CAS  Google Scholar 

  • Schöpfer W, Hradetzky J (1986) Zuwachsrückgang in erkrankten Fichten- und Tannenbeständen - Auswertungsmethoden und Ergebnisse. Forstwiss Centralbl 105:446–470

    Google Scholar 

  • Schöpfer W, Hradetzky J, Kublin E (1997) Wachstumsvergleiche von Fichte und Tanne in Baden-Württemberg. Forst- Holz 52:443–448

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Paul Haupt, Bern

    Google Scholar 

  • Shigo AL (1990) Die neue Baumbiologie. Bernhard Thalacker Verlag, Braunschweig

    Google Scholar 

  • Solberg S (2004) Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. For Pathol 34:93–104

    Google Scholar 

  • Solberg S (1999) Crown condition and growth relationships within stands of Picea abies. Scand J For Res 14:320–327

    Google Scholar 

  • Solberg S, Andreassen K, Clarke N, Torseth K, Tveito OE, Strand GH, Tomter S, (2004) The possible influence of nitrogen and acid deposition on forest growth in Norway. For Eco Manage 192:241–249

    Article  Google Scholar 

  • Solberg S, Strand L (1999) Crown density assessments, control surveys and reproducibility. Environ Monit Assess 56:75–86

    Article  Google Scholar 

  • Solberg S, Tveite B (2000) Crown density and growth relationships between stands of Picea abies in Norway. Scand J For Res 15:87–96

    Google Scholar 

  • Spelsberg G (1988) Zur Frage der Wachstumsdifferenzierung bei vorherrschenden Fichten unter besonderer Berücksichtigung der Waldschäden. Forst- Holz 43:538–542

    Google Scholar 

  • Spelsberg G, Teske H, Graner M, Suntrup U (1995) Hohes Zuwachsniveau der Fichte in Nordrhein-Westfalen. AFZ 50:1097–1098

    Google Scholar 

  • Spiecker H (1995) Growth dynamics in a changing environment - Long-term observations. Plant Soil 169:555–561

    Google Scholar 

  • Spiecker H (1990) Growth variation and environmental stresses - Long-term observations on permanent research plots in southwestern Germany.Water Air Soil Poll 54:247–256

    Article  Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth Trends in European Forests. EFI Res. Rep. 5. Springer, Berlin

  • Spinnler D, Egli P, Korner C (2003) Provenance effects and allometry in beech and spruce under elevated CO2 and nitrogen on two different forest soils. Basic And Applied Ecology 4:467–478

    Article  Google Scholar 

  • Spitzbart G, Sterba H (2004) Application of the Tree Growth Model PrognEU to the Level II –plots of the European Forest Damage Monitoring Programme. Internal report

  • Standovar T, Somogyi Z (1998) Corresponding patterns of site quality, decline and tree growth in a sessile oak stand. Eur J For Pathol 28:133–144

    Google Scholar 

  • Stefan K, Fürst A, Hacker R, Bartels U (1997) Forest Foliar Condition in Europe. Results of the large-scale foliar chemistry surveys (survey 1995 and data from previous years), Austrian Federal Forest Research Centre, EC, UN/ECE, Vienna Brussels Geneva

  • Sterba H, Eckmüllner O (1988) Nadelverlust - Zuwachsrückgang: doch eine Beziehung. Österr Forstztg 10:52–53

    Google Scholar 

  • Steyrer G (1996) Auswahl und Prüfung von Zuwachsparametern als Waldzustandsindikatoren - Einfluss des Kronenzustandes auf den Zuwachs. FBVA-Berichte / Forstliche Bundesversuchsanstalt Wien (Neumann M (ed), Österreichisches Waldschaden-Beobachtungssystem) 96: 121–135

  • Strand GH (1996) Detection of observer bias in ongoing forest health monitoring programmes. Can J For Res 26:1692–1696

    Google Scholar 

  • Swetnam TW, Lynch AM (1993) Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecol Monogr 63:399–424

    Google Scholar 

  • Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytologist 146:59–74

    Article  Google Scholar 

  • Tveite B, Abrahamsen G, Stuanes AO (1990) Liming and wet acid deposition effects on tree growth and nutrition - Experimental results. Water Air Soil Poll 54:409–422

    Article  CAS  Google Scholar 

  • Van der Eerden L, De Vries W, Van Dobben H (1998) Effects of ammonia deposition on forests in the Netherlands. Atmospheric Environment 32:525–532

    Article  Google Scholar 

  • Wargo PM, Minocha R, Wong BL, Long RP, Horsley SB, Hall TJ (2002) Measuring changes in stress and vitality indicators in limed sugar maple on the Allegheny Plateau in north-central Pennsylvania. Can J For Res 32:629–641

    Article  Google Scholar 

  • Waring RH (1987) Characteristics of trees predisposed to die. BioScience 37:569–573

    Google Scholar 

  • Waring RH, Newman K, Bell J (1981) Efficiency of tree crowns and stemwood production at different canopy leaf densities. Forestry 54:129–137

    Google Scholar 

  • Waring RH, Savage T, Cromack K, Rose C (1992) Thinning and nitrogen-fertilization in a grand fir stand infested with western spruce budworm. 4. An ecosystem management perspective. For Sci 38:275–286

    Google Scholar 

  • Waring RH, Thies WG, Muscato D (1980) Stem growth per unit of leaf area: a measure of tree vigor. For Sci 26:112–117

    Google Scholar 

  • Weber UM (1997) Dendroecological reconstruction and interpretation of Larch bud moth (Zeiraphera diniana) outbreaks in two central Alpine valleys of Switzerland from 1470–1990. Trees 11:277–290

    Google Scholar 

  • Weetman GF, Prescott CE, Kohlberger FL, Fournier RM (1997) Ten-year growth response of coastal Douglas-fir on Vancouver Island to N and S fertilization in an optimum nutrition trial. Can J For Res 27:1478–1482

    Article  Google Scholar 

  • Wulff S (2002) The Accuracy of Forest Damage Assessments – Experiences from Sweden. Environ Monit Assess 74:295–309

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Swiss Long-Term Forest Ecosystem Research (LWF) is part of the Swiss Forest Investigation Programme conducted by the Swiss Federal Institute of Forest, Snow and Landscape Research WSL in co-operation with the Swiss Federal Forest Administration. Many thanks to the various field teams and that have assessed the trees on the LWF plots, to Christian Hug for coordinating the fieldwork, to Michèle Kaennel Dobbertin and to the anonymous reviewers for helpful editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Dobbertin.

Additional information

Communicated by Hans Pretzsch

An erratum to this article can be found at http://dx.doi.org/10.1007/s10342-006-0110-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J Forest Res 124, 319–333 (2005). https://doi.org/10.1007/s10342-005-0085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-005-0085-3

Keywords

Navigation