Betting on transitivity in probabilistic causal chains | Cognitive Processing Skip to main content
Log in

Betting on transitivity in probabilistic causal chains

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Causal reasoning is crucial to people’s decision making in probabilistic environments. It may rely directly on data about covariation between variables (correspondence) or on inferences based on reasonable constraints if larger causal models are constructed based on local relations (coherence). For causal chains an often assumed constraint is transitivity. For probabilistic causal relations, mismatches between such transitive inferences and direct empirical evidence may lead to distortions of empirical evidence. Previous work has shown that people may use the generative local causal relations A → B and B → C to infer a positive indirect relation between events A and C, despite data showing that these events are actually independent (von Sydow et al. in Proceedings of the thirty-first annual conference of the cognitive science society. Cognitive Science Society, Austin, 2009, Proceedings of the 32nd annual conference of the cognitive science society. Cognitive Science Society, Austin, 2010, Mem Cogn 44(3):469–487, 2016). Here we used a sequential learning scenario to investigate how transitive reasoning in intransitive situations with negatively related distal events may relate to betting behavior. In three experiments participants bet as if they were influenced by a transitivity assumption, even when the data strongly contradicted transitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Although normal distribution was violated within conditions we still report the results of parametric tests as they have proven to be robust against this deviation. In all cases analyses using nonparametric tests led to comparable results to those reported.

  2. Note that although the shown data for A and D exactly correspond to ΔP AD  = .5, ΔP AD  = −.5, the product of local ΔPs is not .5, but .55. Therefore, the chain presented in the global-transitive group slightly differs from a perfectly transitive chain. This is due to the omission of very rare cases that a transitive chain produces. This was necessary to keep learning trials at a reasonable number.

  3. One may further critically discuss the notion of adaptations to classes of situations and whether this refers to correspondence only (Gould and Lewontin 1979; von Sydow 2014). However, these issues lie beyond the scope of the present article.

References

  • Ahn W, Dennis M (2000) Induction of causal chains. In: Proceedings of the twenty-second annual conference of the cognitive science society. Lawrence Erlbaum Associates, Mahwah, p 19–24

  • Arkes HR, Gigerenzer G, Hertwig R (2016) How bad is incoherence? Decision 3:20. doi:10.1037/dec0000043

    Article  Google Scholar 

  • Baetu I, Baker AG (2009) Human judgments of positive and negative causal chains. J Exp Psychol Anim Behav Process 35(2):153–168. doi:10.1037/a0013764

    Article  PubMed  Google Scholar 

  • Cartwright N (2001) What is wrong with Bayes nets? Monist 84:242–264

    Article  Google Scholar 

  • Cartwright N (2006) From metaphysics to method: comments on manipulability and the causal Markov condition. Br J Philos Sci 57:197–218. doi:10.1093/bjps/axi156

    Article  Google Scholar 

  • Fiedler K, von Sydow M (2015) Heuristics and biases: beyond Tversky and Kahneman’s (1974) judgment under uncertainty. In: Eysenck ME, Groome D (eds) Cognitive psychology: revisiting the classical studies. Sage, London, pp 146–161

  • Gigerenzer G (1996) On narrow norms and vague heuristics: a reply to Kahneman and Tversky. Psychol Rev 103(3):592–596. doi:10.1037/0033-295X.103.3.592

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598. doi:10.1098/rspb.1979.0086

    Article  CAS  PubMed  Google Scholar 

  • Hagmayer Y, Meder B (2013) Repeated causal decision making. J Exp Psychol Learn Mem Cogn 39:33–50. doi:10.1037/a0028643

    Article  PubMed  Google Scholar 

  • Hagmayer YA, Sloman SA (2009) Decision makers conceive of their choices as intervention. J Exp Psychol Gen 138:22–38. doi:10.1037/a0014585

    Article  PubMed  Google Scholar 

  • Hagmayer Y, Meder B, von Sydow M, Waldmann MR (2011) Category transfer in sequential causal learning: the unbroken mechanism hypothesis. Cogn Sci 35:842–873. doi:10.1111/j.1551-6709.2011.01179.x

    Article  PubMed  Google Scholar 

  • Hausman D, Woodward J (1999) Independence, invariance, and the causal Markov condition. Br J Philos Sci 50:521–583. doi:10.1093/bjps/50.4.521

    Article  Google Scholar 

  • Hebbelmann D, von Sydow M (2014) Betting on transitivity in an economic setting. In: Proceedings of the thirty-sixth annual conference of the cognitive science society. Cognitive Science Society, Austin, p 2339–2344

  • Herrnstein RJ (1970) On the law of effect. J Exp Anal Behav 13:243–266. doi:10.1901/jeab.1970.13-243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins HM, Ward WC (1965) Judgment of contingency between responses and outcomes. Psychol Monogr Gen Appl 79:1–17. doi:10.1037/h0093874

    Article  Google Scholar 

  • Johnson SGB, Ahn W-K (2015) Causal networks or causal islands? Representation of mechanisms and the transitivity of causal judgment. Cogn Sci 39:1468–1503. doi:10.1111/cogs.12213

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagnado DA, Sloman SA (2006) Time as a guide to cause. J Exp Psychol Learn Mem Cogn 32:451–460. doi:10.1037/0278-7393.32.3.451

    Article  PubMed  Google Scholar 

  • Lagnado DA, Waldmann MR, Hagmayer Y, Sloman SA (2007) Beyond covariation: cues to causal structure. In: Gopnik A, Schulz L (eds) Causal learning: psychology, philosophy, and computation. Oxford University Press, Oxford, pp 86–100

    Google Scholar 

  • Lien Y, Cheng PW (2000) Distinguishing genuine from spurious causes: a coherence hypothesis. Cogn Psychol 40:87–137. doi:10.1006/cogp.1999.0724

    Article  CAS  PubMed  Google Scholar 

  • Mayrhofer R, Waldmann MR (2015) Agents and causes: dispositional intuitions as a guide to causal structure. Cogn Sci 39:65–95. doi:10.1111/cogs.12132

    Article  PubMed  Google Scholar 

  • Nilsson H, Andersson P (2010) Making the seemingly impossible appear possible: effects of conjunction fallacies in evaluations of bets on football games. J Econ Psychol 31(2):172–180. doi:10.1016/j.joep.2009.07.003

  • Osman M (2010) Controlling uncertainty: a review of human behavior in complex dynamic environments. Psychol Bull 136(1):65–86. doi:10.1037/a0017815

    Article  PubMed  Google Scholar 

  • Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Rehder B, Burnett RC (2005) Feature inference and the causal structure of categories. Cogn Psychol 50:264–314. doi:10.1016/j.cogpsych.2004.09.002

    Article  PubMed  Google Scholar 

  • Rehder B, Waldmann M (2017) Failures of explaining away and screening off in described versus experienced causal learning scenarios. Mem Cogn. doi:10.3758/s13421-016-0662-3

    Google Scholar 

  • Rottman BM, Hastie R (2014) Reasoning about causal relationships: inferences on causal networks. Psychol Bull 140(1):109. doi:10.1037/a0031903

    Article  PubMed  Google Scholar 

  • Sloman S (2005) Causal models: how people think about the world and its alternatives. Oxford University Press, Cambridge

    Book  Google Scholar 

  • Sober E (1988) The principle of the common cause. In: Fetzer J (ed) Probability and causality. Reidel, Dordrecht, pp 211–228

    Chapter  Google Scholar 

  • Sober E, Steel M (2013) Screening-off and causal incompleteness: a no-go theorem. Br J Philos Sci 64:513–550. doi:10.1093/bjps/axs021

    Article  Google Scholar 

  • Spirtes P, Glymour C, Scheines R (2001) Causation, prediction, and search, 2nd edn. Springer, New York

    Google Scholar 

  • Spohn W (2001) Bayesian nets are all there is to causal dependence. In: Galavotti MC, Suppes P, Costantini D (eds) Stochastic dependence and causality. CSLI Publications, Stanford, pp 157–172

    Google Scholar 

  • von Sydow M (2014) ‘Survival of the fittest’ in Darwinian metaphysics—tautology or testable theory? In: Voigts E, Schaff B, Pietrzak-Franger M (eds) Reflecting on Darwin. Ashgate, Farnham. ISBN 978-1-4724-1407-6, p 199–222

  • von Sydow M (2016) Towards a pattern-based logic of probability judgements and logical inclusion “Fallacies”. Think Reason 22(3):297–335. doi:10.1080/13546783.2016.1140678

  • von Sydow M, Meder B, Hagmayer Y (2009) A transitivity heuristic of probabilistic causal reasoning. Proceedings of the thirty-first annual conference of the cognitive science society. Cognitive Science Society, Austin, pp 803–808

    Google Scholar 

  • von Sydow M, Meder B, Hagmayer Y, Waldmann MR (2010) How causal reasoning can bias empirical evidence. Proceedings of the 32nd annual conference of the cognitive science society. Cognitive Science Society, Austin, pp 2087–2092

    Google Scholar 

  • von Sydow M, Hagmayer Y, Meder B (2016) Transitive reasoning distorts induction in causal chains. Mem Cogn 44(3):469–487. doi:10.3758/s13421-015-0568-5

    Article  Google Scholar 

  • Vulkan N (2000) An economist’s perspective on probability matching. J Econ Surv 14:101–118. doi:10.1111/1467-6419.00106

    Article  Google Scholar 

  • Waldmann MR (1996) Knowledge-based causal induction. In: Shanks DR, Holyoak KJ, Medin DL (eds) The psychology of learning and motivation, vol 34. Causal learning. Academic, San Diego, pp 47–88

    Google Scholar 

  • Waldmann MR, Cheng PW, Hagmayer Y, Blaisdell AP (2008) Causal learning in rats and humans: a minimal rational model. In: Chater N, Oaksford M (eds) The probabilistic mind. Prospects for Bayesian cognitive science. University Press, Oxford, pp 453–484

    Chapter  Google Scholar 

  • Waldmann MR, Meder B, von Sydow M, Hagmayer Y (2010) The tight coupling between category and causal learning. Cogn Process 11:143–158. doi:10.1007/s10339-009-0267-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Shirin Betzler, Julia Folz, Alina Greis, Kamala Grothe, Vera Hampel, Antonia Lange, and Alexander Wendt for their valuable work during data collection. Portions of Experiments 1 and 2 were presented at the 2014 Cognitive Science conference in Quebec, Canada (Hebbelmann and von Sydow 2014). This research and the empirical studies were supported by the Grant Sy 111/2 to Momme von Sydow from the Deutsche Forschungsgemeinschaft (DFG) as part of the priority program New Frameworks of Rationality (SPP 1516) as well as the DFG Grant FI294/23 to Klaus Fiedler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Hebbelmann.

Additional information

Handling editor: Don Ross (University of Cape Town); Reviewers: Harold Kincaid (University of Cape Town), Benjamin Rottman (University of Pittsburgh).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebbelmann, D., von Sydow, M. Betting on transitivity in probabilistic causal chains. Cogn Process 18, 505–519 (2017). https://doi.org/10.1007/s10339-017-0821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-017-0821-x

Keywords