BeiDou Global Ionospheric delay correction Model (BDGIM): performance analysis during different levels of solar conditions | GPS Solutions Skip to main content
Log in

BeiDou Global Ionospheric delay correction Model (BDGIM): performance analysis during different levels of solar conditions

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The BeiDou-3 system uses the BeiDou Global broadcast Ionospheric delay correction Model (BDGIM) to describe global vertical total electron content (VTEC) distributions and provide ionospheric delay mitigations in single-frequency positioning. The transmission of BDGIM correction parameters in the navigation message of BeiDou-3 started in mid-2015. The limited coverage of BeiDou-3 transmitted BDGIM parameters inhibits the evaluation of model performance during different levels of solar conditions. As such, we present a method to re-estimate BDGIM correction parameters and generate model parameters during the period 2010–2017 using a small global network of 20 global navigation satellite system (GNSS) stations. Tests covering the eight years demonstrate that BDGIM can reduce the ionospheric error to less than 25% for 98% of the examined samples when compared to global ionospheric maps (GIMs) provided by the International GNSS Service (IGS), and for 90% when compared to the observed VTECs from Jason-2/3 altimetry missions. Overall, BDGIM reduces residual ionospheric delays by 10–20% compared to the ionospheric correction algorithm (ICA) of the global positioning system (GPS), the empirical International Reference Ionosphere (IRI) 2016, and our fitted NeQuick-C model. The root-mean-square (RMS) error of BDGIM increases by 32 and 21% in comparison with GIM-derived and Jason-2 observed VTECs during the geomagnetic storm in March 2015, indicating the significant degradation of model performance during the disturbed geomagnetic period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2):418–429

    Article  Google Scholar 

  • CSNO (2017a) BeiDou navigation satellite system signal in space interface control document – open service signal B1C (Version 1.0). China Satellite Navigation Office, Dec 2017

  • CSNO (2017b) BeiDou navigation satellite system signal in space interface control document – open service signal B2a (Version 1.0). China Satellite Navigation Office, Dec 2017

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod 91(12):1405–1414

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2015) An alternative ionospheric correction model for global navigation satellite systems. J Geod 89(4):391–406

    Article  Google Scholar 

  • Hoque MM, Jakowski N, Berdermann J (2017) Ionospheric correction using NTCM driven by GPS Klobuchar coefficients for GNSS applications. GPS Solut 21(4):1563–1572

    Article  Google Scholar 

  • Hoque MM, Jakowski N, Orús-Pérez R (2019) Fast ionospheric correction using Galileo Az coefficients and the NTCM model. GPS Solut. https://doi.org/10.1007/s10291-019-0833-3

    Article  Google Scholar 

  • Jakowski N, Hoque MM, Mayer C (2011) A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85(12):965–974

    Article  Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aero Electron Syst 23(3):325–331

    Article  Google Scholar 

  • Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1076

    Article  Google Scholar 

  • Montenbruck O, González Rodríguez B (2019) NeQuick-G performance assessment for space applications. GPS Solut. https://doi.org/10.1007/s10291-019-0931-2

    Article  Google Scholar 

  • Nava B, Coïsson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Sol-terr Phy 70(15):1856–1862

    Article  Google Scholar 

  • Orus-Perez R, Hernández-Pajares M, Juan J, Sanz J, García-Fernández M (2002) Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Sol-terr Phy 64(18):2055–2062

    Article  Google Scholar 

  • Orus-Perez R (2016) Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum. J Geod 91(4):397–407

    Article  Google Scholar 

  • Orus-Perez R, Parro-Jimenez JM, Prieto-Cerdeira R (2018) Status of NeQuick G after the solar maximum of cycle 24. Radio Sci 53(3):257–268

    Article  Google Scholar 

  • Prieto-Cerdeira R, Orus-Peres R, Breeuwer E, Lucas-Rodriguez R, Falcone M (2014) Performance of the Galileo single-frequency ionospheric correction during in-orbit validation. GPS World 25(6):53–58

    Google Scholar 

  • Roma-Dollase D, Hernández-Pajares M, Krankowski A, Kotulak K, Ghoddousi-Fard R, Yuan Y, Li Z, Zhang H, Shi C, Wang C (2018) Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod 92(6):691–706

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Huo X (2016) Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv Space Res 57(7):1555–1569

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M (2017) An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solut 21(2):605–615

    Article  Google Scholar 

  • Wang N, Li Z, Li M, Yuan Y, Huo X (2018) GPS, BDS and Galileo ionospheric correction models: an evaluation in range delay and position domain. J Atmos Sol-terr Phy 170:83–91. https://doi.org/10.1016/j.jastp.2018.02.014

    Article  Google Scholar 

  • Wang N, Li Z, Huo X, Li M, Yuan Y, Yuan C (2019) Refinement of global ionospheric coefficients for GNSS applications: methodology and results. Adv Space Res 63(1):343–358

    Article  Google Scholar 

  • Wang N, Li Z, Yuan Y, Li M, Huo X, Yuan C (2019) Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model. Adv Space Res 63(2):886–896

    Article  Google Scholar 

  • Wang N, Li Z, Montenbruck O, Tang C (2019) Quality assessment of GPS, Galileo and BeiDou-2/3 satellite broadcast group delays. Adv Space Res 64(9):1764–1779

    Article  Google Scholar 

  • Wang N, Li Z, Duan B, Hugentobler U, Wang L (2020) GPS and GLONASS observable-specific code bias estimation: comparison of solutions from the IGS and MGEX networks. J Geod. https://doi.org/10.1007/s00190-020-01404-5

    Article  Google Scholar 

  • Wu X, Hu X, Wang G, Zhong H, Tang C (2013) Evaluation of COMPASS ionospheric model in GNSS positioning. Adv Space Res 51(6):959–968

    Article  Google Scholar 

  • Yang Y, Mao Y, Sun B (2020) Basic performance and future developments of BeiDou global navigation satellite system. Satell Navig. https://doi.org/10.1186/s43020-019-0006-0

    Article  Google Scholar 

  • Yuan Y, Huo X, Ou J (2005) Development of a new GNSS broadcast ionospheric time delay correction model (IGGSH). In: Proceedings of the International Symposium on GPS/GNSS, December 8–10, Hong Kong

  • Yuan Y, Huo X, Ou J, Zhang K, Yanju C, Debao W (2008) Refining the Klobuchar ionospheric coefficients based on GPS observations. IEEE Trans Aero Electron Syst 44(4):1498–1510

    Article  Google Scholar 

  • Yuan Y, Li Z, Huo X, Wang N (2014) A next-generation broadcast model (BDSSH) and its implementation scheme of ionospheric time delay correction for BDS/GNSS. In: Proceedings of the ION GNSS+ 2014, September 8–12, Tampa

  • Yuan Y, Wang N, Li Z, Huo X (2019) The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results. Navigation 66(1):55–69

    Article  Google Scholar 

  • Zhu Y, Tan S, Zhang Q, Ren X, Jia X (2019) Accuracy evaluation of the latest BDGIM for BDS-3 satellites. Adv Space Res 64(6):1217–1224

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Crust Movement Observation Network of China (CMONOC) and International GNSS Service (IGS) for providing GNSS data. This work was supported by the National Key Research Program of China (2017YFGH002206), the National Natural Science Foundation of China (42074043), the Alliance of International Science Organizations (ANSO-CR-KP-2020-12), the Youth Innovation Promotion Association and Future Star Program of the Chinese Academy of Sciences. The source codes of BDGIM are available from the first author (wangningbo@aoe.ac.cn) on request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Li, Z., Yuan, Y. et al. BeiDou Global Ionospheric delay correction Model (BDGIM): performance analysis during different levels of solar conditions. GPS Solut 25, 97 (2021). https://doi.org/10.1007/s10291-021-01125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-021-01125-y

Keywords

Navigation