Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI) | Journal of Imaging Informatics in Medicine Skip to main content

Advertisement

Log in

Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI)

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Hippocampus is a part of the limbic system in human brain that plays an important role in forming memories and dealing with intellectual abilities. In most of the neurological disorders related to dementia, such as, Alzheimer’s disease, hippocampus is one of the earliest affected regions. Because there are no effective dementia drugs, an ambient assisted living approach may help to prevent or slow the progression of dementia. By segmenting and analyzing the size/shape of hippocampus, it may be possible to classify the early dementia stages. Because of complex structure, traditional image segmentation techniques can’t segment hippocampus accurately. Machine learning (ML) is a well known tool in medical image processing that can predict and deliver the outcomes accurately by learning from it’s previous results. Convolutional Neural Networks (CNN) is one of the most popular ML algorithms. In this work, a U-Net Convolutional Network based approach is used for hippocampus segmentation from 2D brain images. It is observed that, the original U-Net architecture can segment hippocampus with an average performance rate of 93.6%, which outperforms all other discussed state-of-arts. By using a filter size of \(3 \times 3\), the original U-Net architecture performs a sequence of convolutional processes. We tweaked the architecture further to extract more relevant features by replacing all \(3 \times 3\) kernels with three alternative kernels of sizes \(1 \times 1\), \(3 \times 3\), and \(5 \times 5\). It is observed that, the modified architecture achieved an average performance rate of 96.5%, which outperforms the original U-Net model convincingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. S. Anand, V. Dhikav, Hippocampus in health and disease: An overview, Annals of Indian Academy of Neurology 15 (4) (2012) 239. https://doi.org/10.4103/0972-2327.104323.

    Article  PubMed  PubMed Central  Google Scholar 

  2. A. Ezzati, M. J. Katz, A. R. Zammit, M. L. Lipton, M. E. Zimmerman, M. J. Sliwinski, R. B. Lipton, Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults, Neuropsychologia 93 (2016) 380–385. https://doi.org/10.1016/j.neuropsychologia.2016.08.016.

    Article  PubMed  PubMed Central  Google Scholar 

  3. L. Sadeghi, A. A. Rizvanov, I. I. Salafutdinov, B. Dabirmanesh, M. Sayyah, Y. Fathollahi, K. Khajeh, Hippocampal asymmetry: Differences in the left and right hippocampus proteome in the rat model of temporal lobe epilepsy, Journal of proteomics 154 (2017) 22–29. https://doi.org/10.1016/j.jprot.2016.11.023.

    Article  CAS  PubMed  Google Scholar 

  4. N. Burgess, E. A. Maguire, J. O’Keefe, The human hippocampus and spatial and episodic memory, Neuron 35 (4) (2002) 625–641. https://doi.org/10.1016/s0896-6273(02)00830-9.

    Article  CAS  PubMed  Google Scholar 

  5. A. Vijayakumar, A. Vijayakumar, Comparison of hippocampal volume in dementia subtypes, ISRN radiology 2013 (2012). https://doi.org/10.5402/2013/174524.

  6. C. R. Jack, R. C. Petersen, P. C. O’Brien, E. G. Tangalos, MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease, Neurology 42 (1) (1992) 183–183. https://doi.org/10.1212/wnl.42.1.183.

    Article  PubMed  Google Scholar 

  7. O. Colliot, G. Chételat, M. Chupin, B. Desgranges, B. Magnin, H. Benali, B. Dubois, L. Garnero, F. Eustache, S. Lehéricy, Discrimination between alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus, Radiology 248 (1) (2008) 194–201. https://doi.org/10.1148/radiol.2481070876.

    Article  PubMed  Google Scholar 

  8. R. A. Hazarika, A. K. Maji, S. N. Sur, B. S. Paul, D. Kandar, A survey on classification algorithms of brain images in Alzheimer’s disease based on feature extraction techniques, IEEE Access 9 (2021) 58503–58536. https://doi.org/10.1109/ACCESS.2021.3072559.

    Article  Google Scholar 

  9. R. A. Hazarika, A. K. Maji, D. Kandar, P. Chakrabarti, T. Chakrabarti, K. J. Rao, J. Carvalho, B. Kateb, M. Nami, An evaluation on changes in hippocampus size for cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) patients using fuzzy membership function (2021). https://doi.org/10.31219/osf.io/wujfn.

  10. M. F. Ijaz, M. Attique, Y. Son, Data-driven cervical cancer prediction model with outlier detection and over-sampling methods, Sensors 20 (10) (2020) 2809. https://doi.org/10.3390/s20102809.

    Article  PubMed Central  Google Scholar 

  11. G. Halliday, Pathology and hippocampal atrophy in Alzheimer’s disease, The Lancet Neurology 16 (11) (2017) 862–864. https://doi.org/10.1016/S1474-4422(17)30343-5.

    Article  PubMed  Google Scholar 

  12. Y. Chen, B. Shi, Z. Wang, P. Zhang, C. D. Smith, J. Liu, Hippocampus segmentation through multi-view ensemble convnets, in: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), IEEE, 2017, pp. 192–196. https://doi.org/10.1109/ISBI.2017.7950499.

  13. Y. Shi, K. Cheng, Z. Liu, Hippocampal subfields segmentation in brain MR images using generative adversarial networks, Biomedical engineering online 18 (1) (2019) 1–12. https://doi.org/10.1186/s12938-019-0623-8.

    Article  Google Scholar 

  14. V. Dill, P. C. Klein, A. R. Franco, M. S. Pinho, Atlas selection for hippocampus segmentation: Relevance evaluation of three meta-information parameters, Computers in biology and medicine 95 (2018) 90–98. https://doi.org/10.1016/j.compbiomed.2018.02.005.

    Article  PubMed  Google Scholar 

  15. F. Bartel, H. Vrenken, M. van Herk, M. de Ruiter, J. Belderbos, J. Hulshof, J. C. de Munck, Fast segmentation through surface fairing (FASTSURF): A novel semi-automatic hippocampus segmentation method, PloS one 14 (1) (2019). https://doi.org/10.1371/journal.pone.0210641.

  16. S. Pang, J. Jiang, Z. Lu, X. Li, W. Yang, M. Huang, Y. Zhang, Y. Feng, W. Huang, Q. Feng, Hippocampus segmentation based on local linear mapping, Scientific reports 7 (1) (2017) 1–11. https://doi.org/10.1038/srep45501.

    Article  CAS  Google Scholar 

  17. H. Seo, M. B. Khuzani, V. Vasudevan, C. Huang, H. Ren, R. Xiao, X. Jia, L. Xing, Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications, arXiv preprint arXiv:1911.02521 (2019). https://doi.org/10.1002/mp.13649.

  18. Alzheimer’s disease neuroimaging initiative, [Last accessed on 27/02/2020]. http://adni.loni.usc.edu/data-samples/access-data/

  19. B. Murugesan, V. Ravichandran, K. Ram, S. Preejith, J. Joseph, S. M. Shankaranarayana, M. Sivaprakasam, Ecgnet: Deep network for arrhythmia classification, in: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, 2018, pp. 1–6.

  20. R. Panigrahi, S. Borah, A. K. Bhoi, M. F. Ijaz, M. Pramanik, R. H. Jhaveri, C. L. Chowdhary, Performance assessment of supervised classifiers for designing intrusion detection systems: A comprehensive review and recommendations for future research, Mathematics 9 (6) (2021) 690. https://doi.org/10.3390/math9060690.

    Article  Google Scholar 

  21. R. Panigrahi, S. Borah, A. K. Bhoi, M. F. Ijaz, M. Pramanik, Y. Kumar, R. H. Jhaveri, A consolidated decision tree-based intrusion detection system for binary and multiclass imbalanced datasets, Mathematics 9 (7) (2021) 751. https://doi.org/10.3390/math9070751.

    Article  Google Scholar 

  22. G. Alfian, M. Syafrudin, M. F. Ijaz, M. A. Syaekhoni, N. L. Fitriyani, J. Rhee, A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing, Sensors 18 (7) (2018) 2183. https://doi.org/10.3390/s18072183.

    Article  PubMed Central  Google Scholar 

  23. M. F. Ijaz, G. Alfian, M. Syafrudin, J. Rhee, Hybrid prediction model for type 2 diabetes and hypertension using DBSCAN-based outlier detection, synthetic minority over sampling technique (SMOTE), and random forest, Applied Sciences 8 (8) (2018) 1325. https://doi.org/10.3390/app8081325.

    Article  Google Scholar 

  24. J. F. Pagel, P. Kirshtein, Machine dreaming and consciousness, Academic Press, 2017.

  25. S. Udpa, L. Udpa, NDT techniques: Signal and image processing (2001). https://doi.org/10.1016/B978-0-12-803581-8.03476-7.

    Article  Google Scholar 

  26. V. V. Raghavan, V. N. Gudivada, V. Govindaraju, C. R. Rao, Cognitive computing: Theory and applications, Elsevier, 2016.

  27. A. S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI, Zeitschrift für Medizinische Physik 29 (2) (2019) 102–127.

    Article  Google Scholar 

  28. P. N. Srinivasu, J. G. SivaSai, M. F. Ijaz, A. K. Bhoi, W. Kim, J. J. Kang, Classification of skin disease using deep learning neural networks with mobilenet v2 and LSTM, Sensors 21 (8) (2021) 2852. https://doi.org/10.3390/s21082852.

    Article  PubMed  PubMed Central  Google Scholar 

  29. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28.

  30. Isbi 2014 challenge. https://cs.adelaide.edu.au/~carneiro/isbi14 challenge/. Accessed 03 January 2022

  31. Isbi 2015 challenge. www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge2/index.html. Accessed 03 January 2022

  32. Isbi-2015-challenge. https://cs.adelaide.edu.au/~zhi/isbi15 challenge/index.html. Accessed 03 January 2022

  33. G. Du, X. Cao, J. Liang, X. Chen, Y. Zhan, Medical image segmentation based on u-net: A review, Journal of Imaging Science and Technology 64 (2) (2020) 20508–1. https://doi.org/10.2352/J.ImagingSci.Technol.2020.64.2.020508.

    Article  Google Scholar 

  34. A. Hänsch, M. Schwier, T. Gass, T. Morgas, B. Haas, V. Dicken, H. Meine, J. Klein, H. K. Hahn, Evaluation of deep learning methods for parotid gland segmentation from CT images, Journal of Medical Imaging 6 (1) (2018) 011005. https://doi.org/10.1117/1.JMI.6.1.011005.

  35. L. Huang, W. Xia, B. Zhang, B. Qiu, X. Gao, MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images, Computer methods and programs in biomedicine 143 (2017) 67–74. https://doi.org/10.1016/j.cmpb.2017.02.013.

    Article  PubMed  Google Scholar 

  36. Q. Zheng, H. Delingette, N. Duchateau, N. Ayache, 3-d consistent and robust segmentation of cardiac images by deep learning with spatial propagation, IEEE transactions on medical imaging 37 (9) (2018) 2137–2148. https://doi.org/10.1109/TMI.2018.2820742.

    Article  PubMed  Google Scholar 

  37. Q. Tao, W. Yan, Y. Wang, E. H. Paiman, D. P. Shamonin, P. Garg, S. Plein, L. Huang, L. Xia, M. Sramko, et al., Deep learning–based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study, Radiology 290 (1) (2019) 81–88. https://doi.org/10.1148/radiol.2018180513.

    Article  PubMed  Google Scholar 

  38. J. Wang, J. Lu, G. Qin, L. Shen, Y. Sun, H. Ying, Z. Zhang, W. Hu, A deep learning-based autosegmentation of rectal tumors in MR images, Medical physics 45 (6) (2018) 2560–2564. https://doi.org/10.1002/mp.12918.

    Article  PubMed  Google Scholar 

  39. V. Pedoia, B. Norman, S. N. Mehany, M. D. Bucknor, T. M. Link, S. Majumdar, 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects, Journal of Magnetic Resonance Imaging 49 (2) (2019) 400–410. https://doi.org/10.1002/jmri.26246.

    Article  PubMed  Google Scholar 

  40. B. Norman, V. Pedoia, S. Majumdar, Use of 2D U-NET convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry, Radiology 288 (1) (2018) 177–185. https://doi.org/10.1148/radiol.2018172322.

    Article  PubMed  Google Scholar 

  41. G. Zeng, G. Zheng, Deep learning-based automatic segmentation of the proximal femur from MR images, in: Intelligent Orthopaedics, Springer, 2018, pp. 73–79. https://doi.org/10.1007/978-981-13-1396-7_6.

  42. Q. Huang, J. Sun, H. Ding, X. Wang, G. Wang, Robust liver vessel extraction using 3D U-Net with variant dice loss function, Computers in biology and medicine 101 (2018) 153–162. https://doi.org/10.1016/j.compbiomed.2018.08.018.

    Article  PubMed  Google Scholar 

  43. V. Kumar, J. M. Webb, A. Gregory, M. Denis, D. D. Meixner, M. Bayat, D. H. Whaley, M. Fatemi, A. Alizad, Automated and real-time segmentation of suspicious breast masses using convolutional neural network, PloS one 13 (5) (2018) e0195816. https://doi.org/10.1371/journal.pone.0195816.

  44. S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis, et al., Drunet: a dilated-residual u-net deep learning network to segment optic nerve head tissues in optical coherence tomography images, Biomedical optics express 9 (7) (2018) 3244–3265. https://doi.org/10.1364/BOE.9.003244.

    Article  PubMed  PubMed Central  Google Scholar 

  45. F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, C. I. Sánchez, Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks, Biomedical optics express 8 (7) (2017) 3292–3316. https://doi.org/10.1364/BOE.8.003292.

    Article  PubMed  PubMed Central  Google Scholar 

  46. K. Somasundaram, T. Genish, An atlas based approach to segment the hippocampus from MRI of human head scans for the diagnosis of Alzheimers disease, International Journal of Computational Intelligence and Informatics 5 (1) (2015). https://doi.org/10.1016/j.zemedi.2018.11.002.

  47. X. Tang, S. Mori, T. Ratnanather, M. I. Miller, Segmentation of hippocampus and amygdala using multi-channel landmark large deformation diffeomorphic metric mapping, in: 2012 38th Annual Northeast Bioengineering Conference (NEBEC), IEEE, 2012, pp. 414–415.

  48. Y. Hao, T. Wang, X. Zhang, Y. Duan, C. Yu, T. Jiang, Y. Fan, A. D. N. Initiative, Local label learning (III) for subcortical structure segmentation: application to hippocampus segmentation, Human brain mapping 35 (6) (2014) 2674–2697. https://doi.org/10.1109/NEBC.2012.6207140.

    Article  PubMed  Google Scholar 

  49. H. Zhu, H. Cheng, X. Yang, Y. Fan, A. D. N. Initiative, et al., Metric learning for multi-atlas based segmentation of hippocampus, Neuroinformatics 15 (1) (2017) 41–50. https://doi.org/10.1007/s12021-016-9312-y.

    Article  PubMed  PubMed Central  Google Scholar 

  50. D. Zarpalas, P. Gkontra, P. Daras, N. Maglaveras, Hippocampus segmentation through gradient based reliability maps for local blending of ACM energy terms, in: 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE, 2013, pp. 53–56. https://doi.org/10.1109/ISBI.2013.6556410.

  51. J. V. Manjón, P. Coupé, Hippocampus subfield segmentation using a patch-based boosted ensemble of autocontext neural networks, in: International Workshop on Patch-based Techniques in Medical Imaging, Springer, 2017, pp. 29–36. https://doi.org/10.1007/978-3-319-67434-6_4.

  52. P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles, D. L. Collins, Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage 54 (2) (2011) 940–954. https://doi.org/10.1016/j.neuroimage.2010.09.018.

    Article  PubMed  Google Scholar 

  53. F. van der Lijn, T. Den Heijer, M. M. Breteler, W. J. Niessen, Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts, Neuroimage 43 (4) (2008) 708–720. https://doi.org/10.1016/j.neuroimage.2008.07.058.

    Article  PubMed  Google Scholar 

  54. M. Goubran, E. E. Ntiri, H. Akhavein, M. Holmes, S. Nestor, J. Ramirez, S. Adamo, M. Ozzoude, C. Scott, F. Gao, et al., Hippocampal segmentation for brains with extensive atrophy using three-dimensional convolutional neural networks, Tech. rep., Wiley Online Library (2020). https://doi.org/10.1016/j.neuroimage.2008.07.058.

  55. A. Hänsch, J. H. Moltz, B. Geisler, C. Engel, J. Klein, A. Genghi, J. Schreier, T. Morgas, B. Haas, Hippocampus segmentation in CT using deep learning: impact of MR versus CT-based training contours, Journal of Medical Imaging 7 (6) (2020) 064001. https://doi.org/10.1117/1.JMI.7.6.064001.

  56. D. Ataloglou, A. Dimou, D. Zarpalas, P. Daras, Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning, Neuroinformatics 17 (4) (2019) 563–582. https://doi.org/10.1007/s12021-019-09417-y.

    Article  PubMed  Google Scholar 

  57. N. Safavian, S. A. H. Batouli, M. A. Oghabian, An automatic level set method for hippocampus segmentation in MR images, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 8 (4) (2020) 400–410. https://doi.org/10.1080/21681163.2019.1706054.

    Article  Google Scholar 

  58. M. Chupin, E. Gérardin, R. Cuingnet, C. Boutet, L. Lemieux, S. Lehéricy, H. Benali, L. Garnero, O. Colliot, Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI, Hippocampus 19 (6) (2009) 579–587. https://doi.org/10.1002/hipo.20626.

    Article  PubMed  PubMed Central  Google Scholar 

  59. R. Folks, Using the python programming language for image processing in nuclear medicine, Journal of Nuclear Medicine 55 (supplement 1) (2014) 1322–1322.

    Google Scholar 

  60. S. G. Virupakshappa, R. Sequeira, A. Rastogi, N. Jain, et al., Essence of python programming language in medical image analysis: Enhancing workplace productivity, European Congress of Radiology 2018, 2018.

  61. I. Despotović, B. Goossens, W. Philips, MRI segmentation of the human brain: challenges, methods, and applications, Computational and mathematical methods in medicine 2015 (2015). https://doi.org/10.1155/2015/450341.

  62. P. Kalavathi, V. S. Prasath, Methods on skull stripping of MRI head scan images–a review, Journal of digital imaging 29 (3) (2016) 365–379. https://doi.org/10.1007/s10278-015-9847-8.

    Article  CAS  PubMed  Google Scholar 

  63. R. A. Hazarika, K. Kharkongor, S. Sanyal, A. K. Maji, A comparative study on different skull stripping techniques from brain magnetic resonance imaging, in: International Conference on Innovative Computing and Communications, Springer, 2020, pp. 279–288.

  64. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, 2012, pp. 1097–1105. https://doi.org/10.1145/3065386.

  65. N. Bjorck, C. P. Gomes, B. Selman, K. Q. Weinberger, Understanding batch normalization, in: Advances in Neural Information Processing Systems, 2018, pp. 7694–7705.

  66. K. Hara, D. Saito, H. Shouno, Analysis of function of rectified linear unit used in deep learning, in: 2015 International Joint Conference on Neural Networks (IJCNN), IEEE, 2015, pp. 1–8. https://doi.org/10.1109/IJCNN.2015.7280578.

  67. J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M. Gambardella, Max-pooling convolutional neural networks for vision-based hand gesture recognition, in: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), IEEE, 2011, pp. 342–347. https://doi.org/10.1109/ICSIPA.2011.6144164.

  68. P. Baldi, P. J. Sadowski, Understanding dropout, in: Advances in neural information processing systems, 2013, pp. 2814–2822.

  69. V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, arXiv preprint arXiv:1603.07285 (2016).

  70. F. Lin, Q. Wu, J. Liu, D. Wang, X. Kong, Path aggregation u-net model for brain tumor segmentation, Multimedia Tools and Applications (2020) 1–14.

  71. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruhul Amin Hazarika or Debdatta Kandar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, R.A., Maji, A.K., Syiem, R. et al. Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI). J Digit Imaging 35, 893–909 (2022). https://doi.org/10.1007/s10278-022-00613-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00613-y

Keywords

Navigation