Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans | Journal of Imaging Informatics in Medicine
Skip to main content

Advertisement

Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Airway diseases are frequently related to morphological changes that may influence lung physiology. Accurate airway region segmentation may be useful for quantitative evaluation of disease prognosis and therapy efficacy. The information can also be applied to understand the fundamental mechanisms of various lung diseases. We present a hybrid method to automatically segment the airway regions on 3D volume chest computed tomography (CT) scans. This method uses multi-scale filtering and support vector machine (SVM) classification. The proposed scheme is comprised of two hybrid steps. First, a tubular structure-based multi-scale filter is applied to find the initial candidate airway regions. Second, for identifying candidate airway regions using the fuzzy connectedness technique, the small and disconnected branches of airway regions are detected using SVM classification trained to differentiate between airway and non-airway regions through texture analysis of user-defined landmark points. For development and evaluation of the method, two datasets were incorporated: (1) 55 lung-CT volumes from the Korean Obstructive Lung Disease (KOLD) Cohort Study and (2) 20 cases from the publicly open database (EXACT′09). The average tree-length detection rates of EXACT′09 and KOLD were 56.9 ± 11.0 and 70.5 ± 8.98, respectively. Comparison of the results for the EXACT′09 data set between the presented method and other methods revealed that our approach was a high performer. The method limitations were higher false-positive rates than those of the other methods and risk of leakage. In future studies, application of a convolutional neural network will help overcome these shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Porpodis K et al.: Pneumothorax and asthma. J Thorac Dis 6:S152, 2014

    PubMed  PubMed Central  Google Scholar 

  2. Kiraly AP, Higgins WE, McLennan G, Hoffman EA, Reinhardt JM: Three-dimensional human airway segmentation methods for clinical virtual bronchoscopy. Acad Radiol 9:1153–1168, 2002

    Article  PubMed  Google Scholar 

  3. Li B, Christensen GE, Hoffman EA, McLennan G, Reinhardt JM: Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration. Med Phys 35:5575–5583, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen B, Kitasaka T, Honma H, Takabatake H, Mori M, Natori H, Mori K: Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images. Int J Comput Assist Radiol Surg 7:465–482, 2012

    Article  PubMed  Google Scholar 

  5. Hu S, Hoffman EA, Reinhardt JM: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20:490–498, 2001

    Article  CAS  PubMed  Google Scholar 

  6. Kuhnigk J-M, Hahn H, Hindennach M, Dicken V, Krass S, Peitgen H-O: Lung lobe segmentation by anatomy-guided 3 D watershed transform. Proc. Proceedings of SPIE: City

  7. Lee YK et al.: Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 186:157–165, 2008

    Article  PubMed  Google Scholar 

  8. Mori K, et al.: Lung lobe and segmental lobe extraction from 3D chest CT datasets based on figure decomposition and Voronoi division. Proc. Medical Imaging: City

  9. Lo P, van Ginneken B, Reinhardt JM, Yavarna T, de Jong PA, Irving B, Fetita C, Ortner M, Pinho R, Sijbers J, Feuerstein M, Fabijanska A, Bauer C, Beichel R, Mendoza CS, Wiemker R, Lee J, Reeves AP, Born S, Weinheimer O, van Rikxoort EM, Tschirren J, Mori K, Odry B, Naidich DP, Hartmann I, Hoffman EA, Prokop M, Pedersen JH, de Bruijne M: Extraction of airways from CT (EXACT'09). IEEE Trans Med Imaging 31:2093–2107, 2012

    Article  PubMed  Google Scholar 

  10. Aykac D, Hoffman EA, McLennan G, Reinhardt JM: Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22:940–950, 2003

    Article  PubMed  Google Scholar 

  11. Mori K, Hasegawa J-I, Toriwaki J-I, Anno H, Katada K: Automated extraction and visualization of bronchus from 3D CT images of lung. Proc. Computer Vision, Virtual Reality and Robotics in Medicine: City

  12. Singh H, Crawford M, Curtin J, Zwiggelaar R: Automated 3D segmentation of the lung airway tree using gain-based region growing approach. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City

  13. Sonka M, Park W, Hoffman EA: Rule-based detection of intrathoracic airway trees. IEEE Trans Med Imaging 15:314–326, 1996

    Article  CAS  PubMed  Google Scholar 

  14. Kitasaka T, Mori K, Hasegawa J, Toriwaki J: A method for extraction of bronchus regions from 3D branch tracing and image sharpening for airway tree chest X-ray images by analyzing structural features of the bronchus. Forma 17:321–338, 2002

    Google Scholar 

  15. Tschirren J, Hoffman EA, McLennan G, Sonka M: Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans Med Imaging 24:1529–1539, 2005

    Article  PubMed  PubMed Central  Google Scholar 

  16. Feuerstein M, Kitasaka T, Mori K: Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT. Proc. Proc Second International Workshop on Pulmonary Image Analysis: City

  17. Schlathoelter T, Lorenz C, Carlsen IC, Renisch S, Deschamps T: Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy. Proc Medical Imaging 2002: City

  18. Lo P, Sporring J, Ashraf H, Pedersen JJ, de Bruijne M: Vessel-guided airway tree segmentation: A voxel classification approach. Med Image Anal 14:527–538, 2010

    Article  PubMed  Google Scholar 

  19. Bauer C, Eberlein M, Beichel RR: Graph-based airway tree reconstruction from chest CT scans: evaluation of different features on five cohorts. IEEE Trans Med Imaging 34:1063–1076, 2015

    Article  PubMed  Google Scholar 

  20. Lo P, de Bruijne M: Voxel classification based airway tree segmentation. Proc. Medical Imaging: City

  21. Yano H, Marco F, Kitasaka T, Mori K: Study on bronchus region extraction from 3D chest CT images using loca1 intensity structure analysis and CT value distribution feature. The institute of electronics information and communication, MI2009–13:69–74, 2009

  22. Xu Z, Bagci U, Foster B, Mansoor A, Udupa JK, Mollura DJ: A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT. Med Image Anal 24:1–17, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meng Q, Kitasaka T, Nimura Y, Oda M, Ueno J, Mori K: Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. Int J Comput Assist Radiol Surg:1–17, 2016

  24. Chae EJ, Seo JB, Song JW, Kim N, Park BW, Lee YK, Oh YM, Lee SD, Lim SY: Slope of emphysema index: an objective descriptor of regional heterogeneity of emphysema and an independent determinant of pulmonary function. Am J Roentgenol 194:W248–W255, 2010

    Article  Google Scholar 

  25. Ballard DH: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn 13:111–122, 1981

    Article  Google Scholar 

  26. Frangi AF, Niessen WJ, Vincken KL, Viergever MA: Multiscale vessel enhancement filtering. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention: City

  27. Serra J: Image analysis and mathematical morphology, v. 1. Academic press, 1982

  28. Kong TY, Rosenfeld A: Topological algorithms for digital image processing. Elsevier, 1996

  29. Kimmel R, Shaked D, Kiryati N, Bruckstein AM: Skeletonization via distance maps and level sets. Proc. Photonics for Industrial Applications: City

  30. Telea A, Vilanova A: A robust level-set algorithm for centerline extraction. Proc. Proceedings of the symposium on Data visualisation 2003: City

  31. Udupa JK, Samarasekera S: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph Models Image Process 58:246–261, 1996

    Article  Google Scholar 

  32. Chang Y, Lim J, Kim N, Seo JB, Lynch DA: A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier. Med Phys 40:051912, 2013

    Article  PubMed  Google Scholar 

  33. Chabat F, Yang G-Z, Hansell DM: Obstructive lung diseases: Texture classification for differentiation at ct 1. Radiology 228:871–877, 2003

    Article  PubMed  Google Scholar 

  34. Kim N, Seo JB, Lee Y, Lee JG, Kim SS, Kang S-H: Development of an automatic classification system for differentiation of obstructive lung disease using HRCT. J Digit Imaging 22:136–148, 2009

    Article  PubMed  Google Scholar 

  35. Rudyanto RD, Kerkstra S, van Rikxoort EM, Fetita C, Brillet PY, Lefevre C, Xue W, Zhu X, Liang J, Öksüz İ, Ünay D, Kadipaşaogˇlu K, Estépar RSJ, Ross JC, Washko GR, Prieto JC, Hoyos MH, Orkisz M, Meine H, Hüllebrand M, Stöcker C, Mir FL, Naranjo V, Villanueva E, Staring M, Xiao C, Stoel BC, Fabijanska A, Smistad E, Elster AC, Lindseth F, Foruzan AH, Kiros R, Popuri K, Cobzas D, Jimenez-Carretero D, Santos A, Ledesma-Carbayo MJ, Helmberger M, Urschler M, Pienn M, Bosboom DGH, Campo A, Prokop M, de Jong PA, Ortiz-de-Solorzano C, Muñoz-Barrutia A, van Ginneken B: Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Med Image Anal 18:1217–1232, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xiao C, Staring M, Shamonin D, Reiber JH, Stolk J, Stoel BC: A strain energy filter for 3D vessel enhancement with application to pulmonary CT images. Med Image Anal 15:112–124, 2011

    Article  PubMed  Google Scholar 

  37. Cortes C, Vapnik V: Support-vector networks. Mach Learn 20:273–297, 1995

    Google Scholar 

  38. Keshani M, Azimifar Z, Tajeripour F, Boostani R: Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system. Comput Biol Med 43:287–300, 2013

    Article  PubMed  Google Scholar 

  39. Smola AJ, Schölkopf B: Learning with kernels: Citeseer, 1998

  40. Zheng S, Liu J, Tian JW: A new efficient SVM-based edge detection method. Pattern Recogn Lett 25:1143–1154, 2004 http://image.diku.dk/exact/exact_results.php

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1C1B1011105) and a grant (2014-7006) from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June-Goo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Lee, JG., Kim, N. et al. Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans. J Digit Imaging 32, 779–792 (2019). https://doi.org/10.1007/s10278-018-0158-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-018-0158-8

Keywords