Evaluation of Novel Genetic Algorithm Generated Schemes for Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI) Image Fusion | Journal of Imaging Informatics in Medicine Skip to main content

Advertisement

Log in

Evaluation of Novel Genetic Algorithm Generated Schemes for Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI) Image Fusion

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The use and benefits of a multimodality approach in the context of breast cancer imaging are discussed. Fusion techniques that allow multiple images to be viewed simultaneously are discussed. Many of these fusion techniques rely on the use of color tables. A genetic algorithm that generates color tables that have desired properties such as satisfying the order principle, the rows, and columns principle, have perceivable uniformity and have maximum contrast is introduced. The generated 2D color tables can be used for displaying fused datasets. The advantage the proposed method has over other techniques is the ability to consider a much larger set of possible color tables, ensuring that the best one is found. We asked radiologists to perform a set of tasks reading fused PET/MRI breast images obtained using eight different fusion techniques. This preliminary study clearly demonstrates the need and benefit of a joint display by estimating the inaccuracies incurred when using a side-by-side display. The study suggests that the color tables generated by the genetic algorithm are good choices for fusing MR and PET images. It is interesting to note that popular techniques such as the Fire/Gray and techniques based on the HSV color space, which are prevalent in the literature and clinical practice, appear to give poorer performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. www.kgbtechnologies.com/fusionviewer/

References

  1. Rehm K, Strother SC, Anderson JR, Schaper KA, Rottenberg DA: Display of merged multimodality brain images using interleaved pixels with independent color scales. J Nucl Med 35:1815–21, 1994

    PubMed  CAS  Google Scholar 

  2. Bombardieri E, Crippa F: PET imaging in breast cancer. Q J Nucl Med 45:245–56, 2001

    PubMed  CAS  Google Scholar 

  3. Scheidhauer K, Walter C, Seemann MD: FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions. Eur J Nucl Med Mol Imaging 31(Suppl. 1):S70–9, 2004

    Article  PubMed  Google Scholar 

  4. Beaulieu S, Kinahan P, Tseng J, Dunnwald LK, Schubert EK, Pham P, Lewellen B, Mankoff DA: SUV varies with time after injection in 18F-FDG PET of breast cancer: characterization and method to adjust for time differences. J Nucl Med 44(7):1044–50, 2003

    PubMed  Google Scholar 

  5. Eubank WB, Mankoff D, Bhattacharya M, Gralow J, Linden H, Ellis G, Lindsley S, Austin-Seymour M, Livingston R: Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. AJR Am J Roentgenol 183(2):479–86, 2004

    PubMed  Google Scholar 

  6. Eliat PA, Dedieu V, Bertino C, Boute V, Lacroix J, Constans JM, de Korvin B, Vincent C, Bailly C, Joffre F, de Certaines J, Vincensini D: Magnetic resonance imaging contrast-enhanced relaxometry of breast tumors: an MRI multicenter investigation concerning 100 patients. Magn Reson Imaging 22:475–81, 2004

    Article  PubMed  Google Scholar 

  7. Gibbs P, Liney GP, Lowry M, Kneeshaw PJ, Turnbull LW: Differentiation of benign and malignant sub-1 cm breast lesions using dynamic contrast enhanced MRI. Breast 13:115–21, 2004

    Article  PubMed  CAS  Google Scholar 

  8. Stoutjesdijk MJ, Boetes C, Jager GJ, Beex L, Bult P, Hendriks JH, Laheij RJ, Massuger L, van Die LE, Wobbes T, Barentsz JO: Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer. J Natl Cancer Inst 93:1095–102, 2001

    Article  PubMed  CAS  Google Scholar 

  9. Warner E, Plewes DB, Shumak RS, Catzavelos GC, Di Prospero LS, Yaffe MJ, Goel V, Ramsay E, Chart PL, Cole DE, Taylor GA, Cutrara M, Samuels TH, Murphy JP, Murphy JM, Narod SA: Comparison of breast MRI, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer. J Clin Oncol 19:3524–31, 2001

    PubMed  CAS  Google Scholar 

  10. Wright H, Listinsky J, Rim A, Chellman-Jeffers M, Patrick R, Rybicki L, Kim J, Crowe J: Magnetic resonance imaging as a diagnostic tool for breast cancer in premenopausal women. Am J Surg 190:572–5, 2005

    Article  PubMed  Google Scholar 

  11. Baum F, Fischer U, Vosshenrich R, Grabbe E: Classification of hypervascularized lesions in CE MR imaging of the breast. Eur Radiol 12(5):1087–92, 2002

    Article  PubMed  CAS  Google Scholar 

  12. Moy L, Ponzo F, Noz ME, Maguire Jr, GQ, Murphy-Walcott AD, Deans AE, Kitazono MT, Travascio L, Kramer EL: Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume datasets. J Nucl Med 48(4):528–37, 2007

    Article  PubMed  Google Scholar 

  13. Noz ME, Maguire Jr, GQ, Moy L, Ponzo F, Kramer EL: Can the specificity of MRI breast imaging be improved by fusing 3D MRI volume data sets with FDG PET? IEEE Int Symp Biomed Imaging, 2005. doi:10.1109/ISBI.2004.1398806

    Google Scholar 

  14. Goerres GW, Michel SC, Fehr MK, Kaim AH, Steinert HC, Seifert B, von Schulthess GK, Kubik-Huch RA: Follow-up of women with breast cancer: comparison between MRI and FDG PET. Eur Radiol 13:1635–44, 2003

    Article  PubMed  Google Scholar 

  15. Chen X, Moore MO, Lehman CD, Mankoff DA, Lawton TJ, Peacock S, Schubert EK, Livingston RB: Combined use of MRI and PET to monitor response and assess residual disease for locally advanced breast cancer treated with neoadjuvant chemotherapy. Acad Radiol 11:1115–24, 2004

    Article  PubMed  Google Scholar 

  16. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, Siegel SB, Claussen CD, Cherry SR: Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47:639–47, 2006

    PubMed  Google Scholar 

  17. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR: Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–76, 2006

    PubMed  Google Scholar 

  18. Coman I, Krol A, Feiglin D, Lipson E, Mandel J, Baum KG, Unlu M, Wei L: Intermodality nonrigid breast-image registration. IEEE Int Symp Biomed Imaging, 2005. doi:10.1109/ISBI.2004.1398819

    Google Scholar 

  19. Krol A, Unlu MZ, Baum KG, Mandel JA, Lee W, Coman IL, Lipson ED, Feiglin DH: MRI/PET nonrigid breast-image registration using skin fiducial markers. Phys Med 21(Suppl. 1):39–43, 2006

    Article  PubMed  Google Scholar 

  20. Baum KG: Multimodal Breast Image Registration, Visualization, and Image Synthesis, PhD Dissertation, Rochester, NY: Rochester Institute of Technology, Chester F. Carlson Center for Imaging Science, 2008

  21. Baum KG, Helguera M, Hornak JP, Kerekes JP, Montag ED, Unlu MZ, Feiglin DH, Krol A: Techniques for fusion of multimodal images: application to breast imaging. Proc IEEE Int Conf Image Process, 2007. doi:10.1109/ICIP.2006.312806

    Google Scholar 

  22. Baum KG, Helguera M, Krol A: A new application for displaying and fusing multimodal data sets. Proc SPIE Multimodal Biomed Imaging II, 2007. doi:10.1117/12.702153

    Google Scholar 

  23. Baum KG, Helguera M, Krol A: Fusion viewer: a new tool for fusion and visualization of multimodal medical data sets. J Digit Imaging 21(Suppl. 1):S59–68, 2008

    Article  PubMed  Google Scholar 

  24. Granger EM: “Is CIE L*a*b* good enough for desktop publishing?”. Technical report, Light Source Inc., 1994

  25. Rimersma T, ITB CompuPhase: Colour metric. Available at http://www.compuphase.com/cmetric.htm. Accessed 17 August 2010

  26. CompuPhase: PaletteMaker. Available at http://www.compuphase.com/software_palettemaker.htm. Accessed 17 August 2010

  27. Trumbo BE: Theory for coloring bivariate statistical maps. Am Stat 35(4):220–6, 1981

    Article  Google Scholar 

  28. Ware C: Color sequences for univariate maps: theory, experiments, and principles. IEEE Comput Graph Appl, 2002. doi:10.1109/38.7760

    Google Scholar 

  29. Tedford Jr, WH, Bergquist SL, Flynn WE: The size-color illusion. J Gen Psychol 97:145–9, 1997

    Article  Google Scholar 

  30. Rheingans P: Task-based Color Scale Design. SPIE Applied Image and Pattern Recognition, 35–43, 2000. doi: 10.1117/12.384882

  31. NIH: ImageJ. Available at http://rsb.info.nih.gov/ij/. Accessed 17 August 2010

  32. Russ JC: The Image Processing Handbook, 4th edition. CRC, Boca Raton, 2002

    Google Scholar 

  33. Agoston AT, Daniel BL, Herfkens RJ, Ikeda DM, Birdwell RL, Heiss SG, Sawyer-Glover AM: Intensity-modulated parametric mapping for simultaneous display of rapid dynamic and high-spatial-resolution breast MR imaging data. Radiographics 21:217–26, 2001

    PubMed  CAS  Google Scholar 

  34. Sammi MK, Felder CA, Fowler JS, Lee JH, Levy AV, Li X, Logan J, Pályka I, Rooney WD, Volkow ND, Wang GJ, Springer Jr, CS: Intimate combination of low- and high-resolution image data: I. Real-space PET and H2O MRI, PETAMRI. Magn Reson Med 42:345–60, 1999

    Article  PubMed  CAS  Google Scholar 

  35. Buchsbaum G, Gottschalk A: Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc R Soc Lond B Biol Sci 220(1218):89–113, 1983

    Article  PubMed  CAS  Google Scholar 

  36. Mayo Biomedical Imaging Resource: Analyze Software System. Available at http://www.mayo.edu/bir/Software/Analyze/Analyze.html. Accessed 17 August 2010

  37. Spetsieris PG, Dhawan V, Ishikawa T, Eidelberg D: Interactive visualization of coregistered tomographic images. Proc Biomed Vis 86:58–63, 1995

    Google Scholar 

  38. Lee JS, Kim B, Chee Y, Kwark C, Lee MC, Park KS: Fusion of coregistered cross-modality images using a temporally alternating display method. Med Biol Eng Comput 38:127–32, 2000

    Article  PubMed  CAS  Google Scholar 

  39. Rafferty K, Baum KG, Schmidt E, Krol A, Helguera M: Multimodal display techniques with application to breast imaging. RIT digital media library, http://hdl.handle.net/1850/4648, 2007

Download references

Acknowledgements

We wish to thank Drs. M. Lisi, M. McGrath, J. Tam, and M. Khan for their participation in this study. The authors wish to thank the reviewers who helped improve this manuscript with their comments.

This research was partially supported by Carol M. Baldwin Breast Cancer Research Award and by the Department of Radiology at SUNY Upstate Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Helguera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, K.G., Schmidt, E., Rafferty, K. et al. Evaluation of Novel Genetic Algorithm Generated Schemes for Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI) Image Fusion. J Digit Imaging 24, 1031–1043 (2011). https://doi.org/10.1007/s10278-011-9382-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-011-9382-1

Keywords

Navigation