Abstract
Malignant breast tumors and benign masses appear in mammograms with different shape characteristics: the former usually have rough, spiculated, or microlobulated contours, whereas the latter commonly have smooth, round, oval, or macrolobulated contours. Features that characterize shape roughness and complexity can assist in distinguishing between malignant tumors and benign masses. Signatures of contours may be used to analyze their shapes. We propose to use a signature based on the turning angle function of contours of breast masses to derive features that capture the characteristics of shape roughness as described above. We propose methods to derive an index of the presence of convex regions (XR TA ), an index of the presence of concave regions (VR TA ), an index of convexity (CX TA ), and two measures of fractal dimension (FD TA and FDd TA ) from the turning angle function. The methods were tested with a set of 111 contours of 65 benign masses and 46 malignant tumors with different parameters. The best classification accuracies in discriminating between benign masses and malignant tumors, obtained for XR TA , VR TA , CX TA , FD TA , and FDd TA in terms of the area under the receiver operating characteristics curve, were 0.92, 0.92, 0.93, 0.93, and, 0.92, respectively.











Similar content being viewed by others
References
Homer MJ: Mammographic Interpretation: A Practical Approach, 2nd edition. Boston, MA: McGraw-Hill, 1997
American College of Radiology: Breast Imaging Reporting and Data System BI-RADS, 4th edition. Reston, VA: American College of Radiology, 2004
Rangayyan RM, El-Faramawy NM, Desautels JEL, Alim OA: Measures of acutance and shape for classification of breast tumors. IEEE Trans Med Imaging 16(6):799–810, 1997
Rangayyan RM, Mudigonda NR, Desautels JEL: Boundary modelling and shape analysis methods for classification of mammographic masses. Med Biol Eng Comput 38:487–496, 2000
Alto H, Rangayyan RM, Desautels JEL: Content-based retrieval and analysis of mammographic masses. J Electron Imaging 14(2):023016:1–17, 2005
Bruce LM, Adhami RR: Classifying mammographic mass shapes using the wavelet transform modulus-maxima method. IEEE Trans Med Imaging 18(12):1170–1177, 1999
Sahiner BS, Chan HP, Petrick N, Helvie MA, Hadjiiski LM: Improvement of mammographic mass characterization using spiculation measures and morphological features. Med Phys 28(7):1455–1465, 2001
Rangayyan RM, Nguyen TM: Fractal analysis of contours of breast masses in mammograms. J Digital Imaging, 2007, in press 10.1007/s10278-006-0860-9
Huo Z, Giger ML, Vyborny CJ, Wolverton DE, Metz CE: Computerized classification of benign and malignant masses on digitized mammograms: A study of robustness. Acad Radiol 7(12):1077–1084, 2000
Huo Z, Giger ML, Vyborny CJ: Computerized analysis of multiple-mammographic views: Potential usefulness of special view mammograms in computer-aided diagnosis. IEEE Trans Med Imaging 20(12):1285–1292, 2001
Nandi RJ, Nandi AK, Rangayyan RM, Scutt D: Classification of breast masses in mammograms using genetic programming and feature selection. Med Biol Eng Comput 44(8):683–694, August 2006
Mudigonda NR, Rangayyan RM, Desautels JEL: Detection of breast masses in mammograms by density slicing and texture flow-field analysis. IEEE Trans Med Imaging 20(12):1215–1227, 2001
Wei D, Chan HP, Helvie MA, Sahiner B, Petrick N, Adler DD, Goodsitt MM: Classification of mass and normal breast tissue on digital mammograms: multiresolution texture analysis. Med Phys 22(9):1501–1513, 1995
Rangayyan RM, Guliato D, Carvalho JD, Santiago SA: Feature extraction from the turning angle function for the classification of breast tumors. In Proceedings of the International Special Topics Conference on Information Technology in Biomedicine -IEEE ITAB2006, Ioannina, Greece, October 2006, 6 pages on CDROM
Carvalho JD, Rangayyan RM, Guliato D, Santiago SA: Polygonal modeling of contours using the turning angle function. 20th IEEE Canadian Conference on Electrical and Computer Engineering, Vancouver, BC, April 2007, 4 pages on CDROM
Guliato D, Rangayyan RM, Carvalho JD, Santiago SA: Spiculation-preserving polygonal modeling of contours of breast tumors. Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 2791–2794, New York City, NY, September 2006
Guliato D, Rangayyan RM, Carvalho JD, Santiago SA: Polygonal modeling of contours with the preservation of spicules. IEEE Trans Biomed Eng, 2007, in press
Rangayyan RM: Biomedical Image Analysis. Boca Raton, FL: CRC, 2005
Pohlman S, Powell KA, Obuchowski NA, Chilcote WA, Grundfest-Broniatowski S: Quantitative classification of breast tumors in digitized mammograms. Med Phys 23(8):1337–1345, 1996
Niblack W, Yin J: A pseudo-distance measure for 2D shapes based on turning angle. IEEE International Conference on Image Processing, volume 3, pages 352–355, Washington DC, October 1995
Veltkamp RC, Tanase M: Part-based shape retrieval. Proceedings of the 13th Annual ACM International Conference on Multimedia, pages 543–546, Singapore, November 2005
Veltkamp RC, Tanase M, Sent D: Features in content-based image retrieval systems: a survey. In State-of-the-Art in Content-Based Image and Video Retrieval [Dagstuhl Seminar, 5–10 December 1999], pages 97–124, Deventer, The Netherlands: Kluwer, B.V., 2001
Veltkamp RC: Shape matching: Similarity measures and algorithm. IEEE SMI 2001 International Conference on Shape Modeling and Applications, pages 188–197, Genova, Italy, May 2001
Veltkamp RC: Shape algorithmics. Algorithmica 38(1):1–4, 2003
Latecki LJ, Lakämper R: Application of planar shape comparisons to object retrieval in image databases. Pattern Recogn 35(1):15–29, 2002
Latecki LJ, Lakämper R, Wolter D: Shape similarity and visual parts. International Conference on Discrete Geometry for Computer Imagery (DGCI), pages 34–51, Napoles, Italy, 2003
Arkin EM, Chew LP, Huttenlocher DP, Kedem K, Mitchell JSB: An efficiently computable metric for comparing polygonal shapes. IEEE Trans Pattern Anal Mach Intell 13:209–216, March 1991
Mandelbrot BB: The Fractal Geometry of Nature. San Francisco, CA: Freeman, 1983
Peitgen HO, Jürgens H, Saupe D: Chaos and Fractals: New Frontiers of Science. New York, NY: Springer, 2004
Deering W, West BJ: Fractal physiology. IEEE Eng Med Biol Mag 11(2):40–46, June 1992
Schepers HE, van Beek JHGM, Bassingthwaighte JB: Four methods to estimate the fractal dimension from self-affine signals. IEEE Eng Med Biol Mag 11(2):57–64, June 1992
Fortin C, Kumaresan R, Ohley W, Hoefer S: Fractal dimension in the analysis of medical images. IEEE Eng Med Biol Mag 11(2):65–71, June 1992
Goldberger AL, Rigney DR, West BJ: Chaos and fractals in human physiology. Sci Am 262:42–49, February 1990
Matsubara T, Fujita H, Kasai S, Goto M, Tani Y, Hara T, Endo T: Development of new schemes for detection and analysis of mammographic masses. In Proceedings of the 1997 IASTED International Conference on Intelligent Information Systems (IIS ’97), pages 63–66, Grand Bahama Island, Bahamas, December 1997
Screen Test: Alberta Program for the Early Detection of Breast Cancer—2001/03 Biennial Report. http://www.cancerboard.ab.ca/screentest, 2004
Alto H, Rangayyan RM, Paranjape RB, Desautels JEL, Bryant H: An indexed atlas of digital mammograms for computer-aided diagnosis of breast cancer. Annales des T’el’ecommunications 58(5–6):820–835, 2003
The Mammographic Image Analysis Society digital mammogram database. http://peipa.essex.ac.uk/info/mias.html, accessed October 2006
Suckling J, Parker J, Dance DR, Astley S, Hutt I, Boggis CRM, Ricketts I, Stamatakis E, Cerneaz N, Kok SL, Taylor P, Betal D, Savage J: The Mammographic Image Analysis Society digital mammogram database. In Gale AG, Astley SM, Dance DR, and Cairns AY, editors, Proceedings of the 2nd International Workshop on Digital Mammography, volume 1069 of Excerpta Medica International Congress Series, pages 375–378, York, UK, July 1994
Metz CE: Basic principles of ROC analysis. Semin Nucl Med VIII(4):283–298, 1978
Acknowledgment
This work was supported by the Conselho Nacional Desenvolvimento Científıco e Tecnológico of Brazil, and the Catalyst Program of Research Services, University of Calgary. We thank Fábio José Ayres, University of Calgary for assistance with the ROC procedures.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guliato, D., de Carvalho, J.D., Rangayyan, R.M. et al. Feature Extraction from a Signature Based on the Turning Angle Function for the Classification of Breast Tumors. J Digit Imaging 21, 129–144 (2008). https://doi.org/10.1007/s10278-007-9069-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10278-007-9069-9