Abstract
Affectivity has influence in learning face-to-face environments and improves some aspects in students, such as motivation. For that reason, it is important to integrate affectivity elements into virtual environments. We propose a conceptual model that suggests which elements of tutor, student and dialogue should be integrated and implemented into learning systems. We design an ontology guided by methontology, and apply a mathematical evaluation (OntoQA) to determine the richness of the proposed model. The mathematical evaluation states that the proposed model has relationship richness and horizontal nature. We developed a software application implementing the conceptual model in order to prove its effectivity to generate students’ motivation. The findings suggest that the implemented affective learning ontology impacts positively the motivation in students with low academic performance, in female students and in engineering students.
Similar content being viewed by others
References
Angelaki, C., Mavroidis, I.: Communication and social presence: the impact on adult learners’ emotions in distance learning. Eur. J. Open Distance E-learn. 16(1), 78–93 (2013)
Arguedas, M., Xhafa, F., Daradoumis, T.: An ontology about emotion awareness and affective feedback in elearning. In: International Conference on Intelligent Networking and Collaborative Systems, 2015 , pp. 156–163 (2015). doi:10.1109/INCoS.2015.78
Armour, W.: Emotional intelligence, student engagement, teaching practice, employability, ethics curriculum. Investig. Univ. Teach. Learn. 8(2004), 4–10 (2012)
Arroyo, I., Woolf, B.P., Burelson, W., Muldner, K., Rai, D., Tai, M.: A multimedia adaptive tutoring system for mathematics that addresses cognition, metacognition and affect. Int. J. Artif. Intell. Educ. 24(4), 387–426 (2014). doi:10.1007/s40593-014-0023-y
Balakrishnan, A.: On modeling the affective effect on learning. In: Multi-disciplinary Trends in Artificial Intelligence, pp. 225–235 (2011). doi:10.1007/978-3-642-25725-4_20
Barón-Estrada, M.L., Zatarain-Cabada, R., Zatarain-Cabada, R., Barrón-Estrada, A.: Design and implementation of an affective ITS. Res. Comput. Sci. 56(August), 60–68 (2012)
Bertola, F., Patti, V.: Ontology-based affective models to organize artworks in the social semantic web. Inf. Process. Manag. 52(1), 139–162 (2016). doi:10.1016/j.ipm.2015.10.003
Bloom, B.: Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain, 2nd edn. Addison Wesley, Reading (1984)
Dennis, M., Masthoff, J., Mellish, C.: Towards a model of personality, affective state, feedback and learner motivation. CEUR Workshop Proceedings 872, 17–22 (2012)
Duffy, M.C., Azevedo, R.: Motivation matters: interactions between achievement goals and agent scaffolding for self-regulated learning within an intelligent tutoring system. Comput. Hum. Behav. 52, 338–348 (2015). doi:10.1016/j.chb.2015.05.041
Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering. Assessment SS–97–06, 33–40 (1997). doi:10.1109/AXMEDIS.2007.19
García, B.: Las dimensiones afectivas de la docencia. Rev. Digit. Univ. 10, 1–14 (2009)
Grafsgaard, J.F., Wiggins, J.B., Boyer, K.E., Wiebe, E.N., Lester, J.C.: Embodied affect in tutorial dialogue: Student gesture and posture. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7926 LNAI, 1–10 (2013). doi:10.1007/978-3-642-39112-5-1
Huertas, C., Juárez-Ramírez, R.: Developing an intelligent tutoring system for vehicle dynamics. Proc. Soc. Behav. Sci. 106, 838–847 (2013). doi:10.1016/j.sbspro.2013.12.096
Ibarra, L.M.: Aprende fácilmente con tus imágenes, sonidos y sensaciones, 6ta edn. Garnik Ediciones, México (2011). www.garnik.com
Ibrahimoglu, N., Unaldi, I., Samancioglu, M., Baglibel, M.: the Relationship Between Personality Traits and Learning Styles : a Cluster Analysis. In: Leena and Luna International, vol. 2, Oyama, Japan (2013)
Jaques, N., Conati, C., Harley, J., Azevedo, R.: Predicting Affect from Gaze Data During Interaction with an Intelligent Tutoring System. In: 12th International Conference, ITS 2014, pp. 29–38. Springer, Honolulu, HI, USA (2014). doi:10.1007/978-3-319-07221-0_4
Jiménez, S.: Architecting an intelligent tutoring system with an affective dialogue module. In: CONISOFT 2016 (2016)
Jimenez, S., Juarez-Ramirez, R., Castillo, V.H., Ramírez-Noriega, A.: An Affective Learning Ontology for Educational Systems. In: An Affecti, pp. 1117–1126. Springer, Cham (2016). doi:10.1007/978-3-319-31232-3_106
Juárez-Ramírez, R., Navarro-Almanza, R., Gomez-Tagle, Y., Licea, G., Huertas, C., Quinto, G.: Orchestrating an adaptive intelligent tutoring system: towards integrating the user profile for learning improvement. Proc. Soc. Behav. Sci. 106, 1986–1999 (2013). doi:10.1016/j.sbspro.2013.12.227
Kopp, K., Britt, M., Millis, K., Graesser, A.: Improving the efficiency of dialogue in tutoring. Learn. Instr. 22(5), 320–330 (2012). doi:10.1016/j.learninstruc.2011.12.002
Lara, V.R.: Affectivity in mathematical learning : experimental case in University of Veracruz , Mexico. Ph.D. thesis, Universidad Autónoma de Tamaulipas (2003)
Letzring, T.D., Adamcik, L.A.: Personality traits and affective states: relationships with and without affect induction. Personal. Individ. Differ. 75, 114–120 (2015). doi:10.1016/j.paid.2014.11.011
Lin, H.C.K., Wu, C.H., Hsueh, Y.P.: The influence of using affective tutoring system in accounting remedial instruction on learning performance and usability. Comput. Hum. Behav. 41, 514–522 (2014)
Matani, D.: An O ( k log n ) algorithm for prefix based ranked autocomplete. English. 1–14 (2011)
McCord, M., Matusovich, H.: Developing an Instrument to Measure Motivation , Learning Strategies and Conceptual Change. 120th ASEE Annual Conference and Exposition, Atlanta, GA (2013)
Minghe, G.U.O., Yuan, W.: Affective factors in oral English teaching and learning. High. Educ. Soc. Sci. 5(3), 57–61 (2013). doi:10.3968/j.hess.1927024020130503.2956
Naghizadeh, M., Moradi, H.: A model for motivation assessment in intelligent tutoring systems. In: 7th Conference on Information and Knowledge Technology (IKT), 2015, pp. 1–6 (2015). doi:10.1109/IKT.2015.7288774
Nandi, A., Jagadish, H.V.: Effective Phrase Prediction. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 219–230 (2007). http://dl.acm.org/citation.cfm?id=1325851.1325879
Novak, E.: Toward a mathematical model of motivation, volition, and performance. Comput. Educ. 74, 73–80 (2014). doi:10.1016/j.compedu.2014.01.009
Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy, D., Strohecker, C.: Affective learning—a manifesto. BT Technol. J. 22(4), 253–268 (2004). doi:10.1023/B:BTTJ.0000047603.37042.33
Rica, U.D.C., Pedro, S., Oca, M.D., Rica, C.: The emotional intelligence, its importance in the learning process. Educación 36(1), 1–24 (2012)
Richards, D., Bransky, K.: ForgetMeNot: What and how users expect intelligent virtual agents to recall and forget personal conversational content. Int. J. Hum. Comput. Stud. 72(5), 460–476 (2014). doi:10.1016/j.ijhcs.2014.01.005
Rimland, E.: Assessing affective learning using a student response system. Libr. Acad. 13(4), 385–401 (2013). doi:10.1353/pla.2013.0037
Shephard, K.: Higher education for sustainability: seeking affective learning outcomes (2008). doi:10.1108/14676370810842201
Tartir, S., Arpinar, I., Moore, M., Sheth, a., Aleman-Meza, B.: OntoQA: Metric-based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, pp. 45–53. (2005)
Wolfe, C.R., Widmer, C.L., Reyna, V.F., Hu, X., Cedillos, E.M., Fisher, C.R., Brust-Renck, P.G., Williams, T.C., Damas Vannucchi, I., Weil, A.M.: The development and analysis of tutorial dialogues in AutoTutor Lite. Behav. Res. Methods 45(3), 623–636 (2013). doi:10.3758/s13428-013-0352-z
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jiménez, S., Juárez-Ramírez, R., Castillo, V.H. et al. Integrating affective learning into intelligent tutoring systems. Univ Access Inf Soc 17, 679–692 (2018). https://doi.org/10.1007/s10209-017-0524-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10209-017-0524-1