Dimensionality Reduction with Subgaussian Matrices: A Unified Theory | Foundations of Computational Mathematics Skip to main content
Log in

Dimensionality Reduction with Subgaussian Matrices: A Unified Theory

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a theory for Euclidean dimensionality reduction with subgaussian matrices which unifies several restricted isometry property and Johnson–Lindenstrauss-type results obtained earlier for specific datasets. In particular, we recover and, in several cases, improve results for sets of sparse and structured sparse vectors, low-rank matrices and tensors, and smooth manifolds. In addition, we establish a new Johnson–Lindenstrauss embedding for datasets taking the form of an infinite union of subspaces of a Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. System Sci., 66(4):671–687, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Adamczak, R. Latała, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Geometry of log-concave ensembles of random matrices and approximate reconstruction. C. R. Math. Acad. Sci. Paris, 349(13-14):783–786, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Agarwal, S. Har-Peled, and H. Yu. Embeddings of surfaces, curves, and moving points in Euclidean space. SIAM J. Comput., 42(2):442–458, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Alon. Problems and results in extremal combinatorics. I. Discrete Math., 273(1-3):31–53, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted isometry property for random matrices. Constr. Approx., 28(3):253–263, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Baraniuk and M. Wakin. Random projections of smooth manifolds. Found. Comput. Math., 9(1):51–77, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Biau, L. Devroye, and G. Lugosi. On the performance of clustering in Hilbert spaces. IEEE Trans. Inform. Theory, 54(2):781–790, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to image and text data. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 245–250. ACM, 2001.

  9. T. Blumensath. Sampling and reconstructing signals from a union of linear subspaces. IEEE Trans. Inform. Theory, 57(7):4660–4671, 2011.

    Article  MathSciNet  Google Scholar 

  10. T. Blumensath and M. Davies. Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Inform. Theory, 55(4):1872–1882, 2009.

    Article  MathSciNet  Google Scholar 

  11. E. Candès and Y. Plan. Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans. Inform. Theory, 57(4):2342–2359, 2011.

    Article  MathSciNet  Google Scholar 

  12. E. Candès and T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Clarkson. Tighter bounds for random projections of manifolds. In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages 39–48. ACM, 2008.

  14. S. Dasgupta. Learning mixtures of Gaussians. In 40th Annual Symposium on Foundations of Computer Science (New York, 1999), pages 634–644. IEEE Computer Soc., Los Alamitos, CA, 1999.

  15. S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures Algorithms, 22(1):60–65, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Dirksen. Tail bounds via generic chaining. Electron. J. Probab., 20:no. 53, 1–29, 2015.

    MathSciNet  MATH  Google Scholar 

  17. D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Drineas, M. Mahoney, S. Muthukrishnan, and T. Sarlós. Faster least squares approximation. Numer. Math., 117(2):219–249, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Eftekhari and M. Wakin. New analysis of manifold embeddings and signal recovery from compressive measurements. Applied and Computational Harmonic Analysis, 39(1):67 – 109, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Eldar and M. Mishali. Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inform. Theory, 55(11):5302–5316, 2009.

    Article  MathSciNet  Google Scholar 

  21. S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhaüser, Boston, 2013.

    Book  MATH  Google Scholar 

  22. P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some graphs. J. Combin. Theory Ser. B, 44(3):355–362, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Giryes, S. Nam, M. Elad, R. Gribonval, and M. E. Davies. Greedy-like algorithms for the cosparse analysis model. Linear Algebra Appl., 441:22–60, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Gordon. On Milman’s inequality and random subspaces which escape through a mesh in \({\bf R}^n\). In Geometric aspects of functional analysis (1986/87), volume 1317 of Lecture Notes in Math., pages 84–106. Springer, Berlin, 1988.

  25. C. Hegde, M. Wakin, and R. Baraniuk. Random projections for manifold learning. In Advances in neural information processing systems, pages 641–648, 2007.

  26. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM.

  27. P. Indyk and A. Naor. Nearest-neighbor-preserving embeddings. ACM Trans. Algorithms, 3(3):Art. 31, 12, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Jayram and D. Woodruff. Optimal bounds for Johnson-Lindenstrauss transforms and streaming problems with subconstant error. ACM Trans. Algorithms, 9(3):Art. 26, 17, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  29. W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189–206. Amer. Math. Soc., Providence, RI, 1984.

  30. A. Kalai, A. Moitra, and G. Valiant. Disentangling gaussians. Commun. ACM, 55(2):113–120, February 2012.

    Article  Google Scholar 

  31. B. Klartag and S. Mendelson. Empirical processes and random projections. J. Funct. Anal., 225(1):229–245, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems. Springer, Berlin, 2011.

    Book  MATH  Google Scholar 

  33. K. Larsen and J. Nelson. The Johnson-Lindenstrauss lemma is optimal for linear dimensionality reduction. ArXiv:1411.2404, 2014.

  34. G. Lecué and S. Mendelson. Sparse recovery under weak moment assumptions. ArXiv:1401.2188, 2014.

  35. J. Lee. Riemannian manifolds. Springer-Verlag, New York, 1997.

    Book  Google Scholar 

  36. Y. Lu and M. Do. A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Process., 56(6):2334–2345, 2008.

    Article  MathSciNet  Google Scholar 

  37. O. Maillard and R. Munos. Linear regression with random projections. J. Mach. Learn. Res., 13:2735–2772, 2012.

    MathSciNet  MATH  Google Scholar 

  38. W. Mantzel. Parametric estimation of randomly compressed functions. PhD. Thesis, Georgia Institute of Technology, 2013.

  39. W. Mantzel and J. Romberg. Compressed subspace matching on the continuum. Information and Inference, 4(2):79–107, 2015.

    Article  MathSciNet  Google Scholar 

  40. W. Mantzel, J. Romberg, and K. Sabra. Compressive matched-field processing. The Journal of the Acoustical Society of America, 132(1), 2012.

  41. J. Matoušek. On variants of the Johnson-Lindenstrauss lemma. Random Structures Algorithms, 33(2):142–156, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann. Reconstruction and subgaussian operators in asymptotic geometric analysis. Geom. Funct. Anal., 17(4):1248–1282, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann. Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constr. Approx., 28(3):277–289, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Nam, M. Davies, M. Elad, and R. Gribonval. The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal., 34(1):30–56, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom., 39(1-3):419–441, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Raginsky, R. Willett, Z. Harmany, and R. Marcia. Compressed sensing performance bounds under Poisson noise. IEEE Trans. Signal Process., 58(8):3990–4002, 2010.

    Article  MathSciNet  Google Scholar 

  47. H. Rauhut, R. Schneider, and Z. Stojanac. Low rank tensor recovery via iterative hard thresholding. In Proc. 10th International Conference on Sampling Theory and Applications, 2013.

  48. B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev., 52(3):471–501, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Sarlos. Improved approximation algorithms for large matrices via random projections. In Foundations of Computer Science, 2006. FOCS ’06. 47th Annual IEEE Symposium on, pages 143–152, Oct 2006.

  50. L. Schulman. Clustering for edge-cost minimization. In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 547–555, New York, NY, USA, 2000. ACM.

  51. G. Stewart. Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev., 15:727–764, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Talagrand. Regularity of Gaussian processes. Acta Math., 159(1-2):99–149, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Talagrand. Majorizing measures without measures. Ann. Probab., 29(1):411–417, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Talagrand. The generic chaining. Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  55. S. Vempala. The random projection method. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 65. American Mathematical Society, Providence, RI, 2004.

  56. N. Verma. Distance preserving embeddings for general \(n\)-dimensional manifolds. J. Mach. Learn. Res., 14:2415–2448, 2013.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research for this paper was initiated after a discussion with Justin Romberg about compressive parameter estimation. The author would like to thank him for providing William Mantzel’s PhD thesis [38] and also the two reviewers for some useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjoerd Dirksen.

Additional information

Communicated by Thomas Strohmer.

This research was supported by SFB grant 1060 of the Deutsche Forschungsgemeinschaft (DFG).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dirksen, S. Dimensionality Reduction with Subgaussian Matrices: A Unified Theory. Found Comput Math 16, 1367–1396 (2016). https://doi.org/10.1007/s10208-015-9280-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9280-x

Keywords

Mathematics Subject Classification

Navigation