Deterministic Quadrature Formulas for SDEs Based on Simplified Weak Itô–Taylor Steps | Foundations of Computational Mathematics Skip to main content
Log in

Deterministic Quadrature Formulas for SDEs Based on Simplified Weak Itô–Taylor Steps

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We study the problem of approximating the expected value \({\mathbb E}f(X(1))\) of a function f of the solution X of a d-dimensional system of stochastic differential equations (SDE) at time point 1 based on finitely many evaluations of the coefficients of the SDE, the integrand f and their derivatives. We present a deterministic algorithm, which produces a quadrature rule by iteratively applying a Markov transition based on the distribution of a simplified weak Itô–Taylor step together with strategies to reduce the diameter and the size of the support of a discrete measure. We essentially assume that the coefficients of the SDE are s-times continuously differentiable and the diffusion coefficient satisfies a uniform non-degeneracy condition and that the integrand f is r-times continuously differentiable. In the case \(r \le (\lfloor s/2 \rfloor - 1) \cdot 2d/(d + 2)\), we almost achieve an error of order \(\min (r, s)/d\) in terms of the computational cost, which is optimal in a worst-case sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. Bayer and J. Teichmann, The proof of Tchakaloff’s theorem, Proc. Amer. Math. Soc. 134 (2006), 3035–3040.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Davis, A construction of nonnegative approximate quadratures, Math. Comp. 21 (1967), 578–582.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Dereich, T. Müller-Gronbach and K. Ritter, On the complexity of computing quadrature formulas for SDEs, in: Foundations of computational mathematics, Budapest 2011, pp. 72–92, London Math. Soc. Lecture Note Ser., 403, Cambridge Univ. Press, Cambridge, 2013.

  4. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

    MATH  Google Scholar 

  5. A. Friedman, Stochastic Differential Equations and Applications. Vol. 1., Academic Press, New York–London., 1975.

  6. L. G. Gyurkó and T. Lyons, Efficient and practical implementations of cubature on Wiener space, Stochastic Analysis 2010 (2011), 73–111.

    MATH  Google Scholar 

  7. S. Heinrich, Monte Carlo complexity of global solution of integral equations, J. Complexity 14 (1998), 151–175.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Geiss, Quantitative approximation of certain stochastic integrals, Stoch. Stoch. Rep. 73 (2002), 241–270.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), 607–617.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  11. S. Kusuoka, Approximation of expectation of diffusion process and mathematical finance, Adv. Stud. Pure Math. 31 (2001), 147–165.

    MathSciNet  MATH  Google Scholar 

  12. S. Kusuoka, Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus, Adv. Math. Econ. 6 (2004), 69–83.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Litterer and T. Lyons, High order recombination and an application to cubature on wiener space, Ann. Appl. Probab. 22 (2012), 1301–1327.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Lyons and N. Victoir, Cubature on Wiener space, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), 169–198.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. S. Miller, Some eclectic matrix theory, Robert E. Krieger Publishing Co., Inc., Melbourne, 1987.

    MATH  Google Scholar 

  16. T. Müller-Gronbach, K. Ritter and L. Yaroslavtseva, Derandomization of the Euler scheme for scalar stochastic differential equations, J. Complexity 28 (2012), 139–153.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Müller-Gronbach, K. Ritter and L. Yaroslavtseva, On the complexity of computing quadrature formulas for marginal distributions of SDEs, J. Complexity 31 (2015), 110–145.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Novak, The real number model in numerical analysis, J. Complexity 11 (1995), 57–73.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Talay, Efficient numerical schemes for the approximation of expectations of functionals of the solution of an SDE and applications, in: Filtering and control of Random Processes (Paris, 1983), pp. 294–313, Lect. Notes Control Inf. Sci., 61, Springer, Berlin, 1984.

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the Priority Programme 1324. We are thankful to Fabian Knorr for carrying out the numerical experiments presented in Sect. 7. We are very grateful to two anonymous referees for their valuable comments, which substantially improved the presentation of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Müller-Gronbach.

Additional information

Communicated by Andrew Stuart.

Appendix

Appendix

In this section, we present the sequential support point elimination procedure R of Davis [2] that constitutes the main ingredient of the support cardinality reduction operator \(R_{\tau }\) constructed in Sect. 4.4, and we discuss its computational cost. Furthermore, we provide results on smoothness properties of the semigroup of the linear operators \(P_t:F^1\rightarrow F^1\) associated with equations \((x_0,a,b)\in {\mathcal C}_{K,\lambda }^{s,s}\), see (22).

1.1 A Sequential Support Point Elimination Procedure

Fix \(k\in {\mathbb N}\) and k functions

$$\begin{aligned} h_1,\ldots ,h_k:{\mathbb R}^d\rightarrow {\mathbb R}. \end{aligned}$$

Let \(N\in {\mathbb N}\) with \(N>k\) and consider a measure

$$\begin{aligned} \mu = \sum _{i=1}^{N} w_i\cdot \delta _{x_i} \in {\mathcal M}({\mathbb R}^d) \end{aligned}$$

with \(|{\text {supp}}(\mu )|=N\). Choose any \(u\in {\mathbb R}^{k+1}{\setminus } \{0\}\) that satisfies

$$\begin{aligned} \sum _{i=1}^{k+1} u_i\cdot h_j(x_i) = 0,\quad j=1,\ldots ,k, \end{aligned}$$
(39)

and \(\{i:u_i< 0 \}\ne \emptyset \), and put

$$\begin{aligned} \alpha = \min _{i: \,u_i <0}\left( -\frac{w_i}{u_i}\right) . \end{aligned}$$

Let

$$\begin{aligned} \widetilde{w}_i = {\left\{ \begin{array}{ll} w_i + \alpha \cdot u_i, &{}\quad \text {if } i\in \{1,\ldots ,k+1\},\\ w_i, &{}\quad \text {if }i\in \{k+2,\ldots ,N\}, \end{array}\right. } \end{aligned}$$

and define

$$\begin{aligned} \widetilde{\mu }= \sum _{i=1}^{N} \widetilde{w}_i\cdot \delta _{x_i}. \end{aligned}$$

Clearly, \(\widetilde{w}_1,\ldots , \widetilde{w}_{N} \ge 0\) and \(\widetilde{w}_i=0\) for some \(i\in \{1,\ldots ,k+1\}\). Hence \(\widetilde{\mu }\in {\mathcal M}({\mathbb R}^d)\) and

$$\begin{aligned} {\text {supp}}(\widetilde{\mu })\subset {\text {supp}}(\mu ),\, |{\text {supp}}(\widetilde{\mu })|\le N-1. \end{aligned}$$

Furthermore, by (39),

$$\begin{aligned} \sum _{i=1}^{N} \widetilde{w}_i\cdot h_j(x_i) = \sum _{i=1}^{N} w_i\cdot h_j(x_i),\quad j=1,\ldots ,k. \end{aligned}$$

Iteratively repeating this procedure, we obtain a measure \(R(\mu )\in {\mathcal M}({\mathbb R}^d)\) with

$$\begin{aligned} {\text {supp}}(R(\mu ))\subset {\text {supp}}(\mu ),\, |{\text {supp}}(R(\mu ))|\le k \end{aligned}$$

and

$$\begin{aligned} \int _{{\mathbb R}^d} h_j\, \mathrm{d}\mu = \int _{{\mathbb R}^d} h_j \, \mathrm{d}R(\mu ),\quad j=1,\ldots ,k. \end{aligned}$$

Clearly, at most \(N-k\) steps are needed to obtain \(R(\mu )\) and in each step the number of basic computational operations needed to compute the support points and the corresponding weights of the actual measure \(\widetilde{\mu }\) is bounded by \(c\cdot k^3\). Therefore, the total number \(\text {op}(R(\mu ))\) of basic computational operations needed to compute \(R(\mu )\) satisfies

$$\begin{aligned} \text {op}(R(\mu )) \le c\cdot |{\text {supp}}(\mu )|\cdot k^3. \end{aligned}$$

Let \(\gamma \in {\mathbb N}\). The particular choice

$$\begin{aligned} k= \left( {\begin{array}{c}2\gamma +1 +d\\ d\end{array}}\right) ,\,\, \{h_1,\ldots ,h_k\} = \{p_\alpha :\alpha \in {\mathbb N}_0^d, |\alpha |_1\le 2\gamma +1\} \end{aligned}$$
(40)

with the monomials

$$\begin{aligned} p_\alpha (x) =x^\alpha ,\quad x\in {\mathbb R}^d, \end{aligned}$$

yields the operator R employed in Sect. 4.4.

Remark 7

In the case of (40) with \(d=1\), the system of linear equations (39) is given by

$$\begin{aligned} Au=0, \end{aligned}$$
(41)

where A is a \((2\gamma +2)\times (2\gamma +3)\) Vandermonde matrix with entries \(A_{j,i}=x_i^{j-1}\). Consider the \((2\gamma +3)\times (2\gamma +3)\) Vandermonde matrix \(\bar{A} = (x_i^{j-1})_{1\le j,i\le 2\gamma +3}\). Then \(\bar{A}\) is invertible and the last column of \(\bar{A}^{-1}\) solves the Eq. (41). Using an explicit representation of \(\bar{A}^{-1}\), see, e.g.,  [15, Section 14(c)], one obtains

$$\begin{aligned} \text {ker}(A)=\left\{ \left( z\cdot \prod _{k\not =i}(x_k-x_i)^{-1} \right) _{i=1, \ldots , 2\gamma +3}:z\in {\mathbb R}\right\} \end{aligned}$$

for the null space \(\text {ker}(A)\) of A.

In the case of (40) with \(d>1\), explicit formulas for a solution u of Eq. (39) seem to be unknown up to now, such that suitable numerical methods have to be employed.

1.2 Smoothness Properties of the Associated Semigroup

Let \(s,r\in {\mathbb N}\), \(\beta \ge 0\) and \(K\ge 1\ge \lambda >0\). We fix an equation

$$\begin{aligned} (x_0,a,b)\in {\mathcal C}_{K,\lambda }^{s,s} \end{aligned}$$
(42)

and we consider the semigroup of linear operators \((P_t)_{t\in [0, \infty )}\) associated with a and b, see (22).

Lemma 8

For every \(f\in {F}^{r,\beta }\) and \(t\in (0,1]\) we have

$$\begin{aligned} P_tf\in C^{s+1}({\mathbb R}^d) \end{aligned}$$

and for all \(y\in {\mathbb R}^d\) and all \(\alpha \in {\mathbb N}_0^d\) with \(0\le |\alpha |_1\le s+1\),

$$\begin{aligned} |(P_tf)^{(\alpha )}(y)|\le c\cdot \Vert f\Vert _{r, \beta }\cdot (1+|y|^\beta )\cdot \frac{1}{t^{(|\alpha |_1-\min (|\alpha |_1,r))/2}}, \end{aligned}$$
(43)

where \(c= c(d,m,s,r,\beta ,K, \lambda )\).

Proof

In the sequel, unspecified positive constants c may only depend on the parameters \(d,m,s,r,\beta ,K\) and \(\lambda \).

By (42) the distribution of \(X^y(t)\) has a Lebesgue density for all \(y\in {\mathbb R}^d\) and \(t\in (0,1]\). More precisely, put \(\sigma = bb^T\), let

$$\begin{aligned} V = \{(v,y,t,z)\mid 0\le v< t \le 1,\,y,z\in {\mathbb R}^d\} \end{aligned}$$

and consider the partial differential equation

$$\begin{aligned} \frac{1}{2}\sum _{i,j=1}^d \sigma _{i,j}(y)\cdot \frac{\partial ^2 u}{\partial y_i \partial y_j}(v,y)+\sum _{i=1}^d a_{i}(y)\cdot \frac{\partial u}{\partial y_i}(v,y)+\frac{\partial u}{\partial v}(v,y) = 0 \end{aligned}$$
(44)

for \((v,y)\in [0,1)\times {\mathbb R}^d\). By (42) the Eq. (44) has a unique fundamental solution

$$\begin{aligned} G:V\rightarrow [0,\infty ) \end{aligned}$$

and we have

$$\begin{aligned} {\mathbb P}_{X^y(t)}(A) = \int _A G(0,y,t,z)\mathrm{d}z \end{aligned}$$
(45)

for every Borel set \(A\subset {\mathbb R}^d\) and all \(y\in {\mathbb R}^d\) and \(t\in (0,1]\). See [5, Theorem 6.5.4].

Moreover, by [4, Chapter 9,Theorem 7] we have \(G(0,\cdot ,t,z)\in C^{s+1}({\mathbb R}^d)\) for all \(t\in (0,1]\) and \(z\in {\mathbb R}^d\) with

$$\begin{aligned} \Bigl |\frac{\partial ^{\alpha }G}{\partial y^\alpha }(0,y,t,z)\Bigr |\le \frac{c}{ t^{(|\alpha |_1+d)/2}} \cdot \exp \left( -c\cdot \frac{|z-y|^2}{t}\right) \end{aligned}$$
(46)

for all \(\alpha \in {\mathbb N}_0^d\) with \(0\le |\alpha |_1 \le s+1\) and \(y\in {\mathbb R}^d\).

Using (45) and (46), we obtain \(P_t f\in C^{s+1}({\mathbb R}^d)\) with

$$\begin{aligned} (P_tf)^{(\alpha )}(y)=\int _{{\mathbb R}^d} \frac{\partial ^{\alpha }G}{\partial y^\alpha }(0,y,t,z)\cdot f(z)\mathrm{d}z \end{aligned}$$
(47)

for all \(f\in {F}^{r,\beta }\), \(t\in (0,1]\), \(y\in {\mathbb R}^d\) and \(\alpha \in {\mathbb N}_0^d\) with \(0\le |\alpha |_1 \le s+1\).

Fix f, t, y of the latter type and \(\alpha \in {\mathbb N}_0^d\) with \(1\le |\alpha |_1 \le s+1\). Put

$$\begin{aligned} q=\min (|\alpha |_1,r) \end{aligned}$$

as well as

$$\begin{aligned} I =\int _{{\mathbb R}^d} \left( f(z) -\sum _{\rho \in {\mathbb N}_0^d:0\le |\,\rho |_1\le q-1}\frac{f^{(\rho )}(y)}{\rho !} \cdot (z-y)^{\rho } \right) \cdot \frac{\partial ^{\alpha }G}{\partial y^\alpha }(0,y,t,z)\mathrm{d}z \end{aligned}$$

and

$$\begin{aligned} I_\rho =\frac{f^{(\rho )}(y)}{\rho !} \cdot \int _{{\mathbb R}^d} (z-y)^{\rho } \cdot \frac{\partial ^{\alpha }G}{\partial y^\alpha }(0,y,t,z)\mathrm{d}z \end{aligned}$$

for \(\rho \in {\mathbb N}_0^d\) with \(0\le |\rho |_1\le q-1\).

Using integration by parts as well as (46) and (47) we obtain

$$\begin{aligned} I_\rho= & {} (-1)^{|\rho |_1}\cdot f^{(\rho )}(y) \cdot \int _{{\mathbb R}^d} \frac{\partial ^{\alpha -\rho }G}{\partial y^{\alpha -\rho }}(0,y,t,z)\mathrm{d}z\\= & {} (-1)^{|\rho |_1}\cdot f^{(\rho )}(y) \cdot (P_t 1)^{(\alpha -\rho )}(y)=0 \end{aligned}$$

for all \(\rho \in {\mathbb N}_0^d\) with \(0\le |\rho |_1\le q-1\). Hence

$$\begin{aligned} (P_tf)^{(\alpha )}(y) = I. \end{aligned}$$

Clearly,

$$\begin{aligned} I = \sum _{\rho \in {\mathbb N}_0^d:|\rho |_1=q}\int _{{\mathbb R}^d} f^{(\rho )}(\theta _{z})\cdot (z-y)^{q}\cdot \frac{\partial ^{\alpha }G}{\partial y^\alpha }(0,y,t,z)\mathrm{d}z, \end{aligned}$$

where \(\theta _{z} \in {\mathbb R}^d\) satisfies \(|\theta _{z}-y|\le |z-y|\). Since \(f\in F^{r,\beta }\) we get, similarly to (30),

$$\begin{aligned} |f^{(\rho )}(\theta _{z})|\le c\cdot \Vert f\Vert _{r, \beta }\cdot (1+|y|^\beta +|z-y|^\beta ) \end{aligned}$$

for all \(\rho \in {\mathbb N}_0^d\) with \(|\rho |_1=q\) and all \(z\in {\mathbb R}^d\). Using (46) we therefore obtain

$$\begin{aligned} |I|&\le \frac{c}{ t^{(|\alpha |_1+d)/2}} \cdot \Vert f\Vert _{r, \beta }\cdot \int _{{\mathbb R}^d} (1+|y|^\beta +|z-y|^\beta )\cdot |z-y|^{q}\cdot \exp \left( -c\cdot \frac{|z-y|^2}{t}\right) \mathrm{d}z\\&\le \frac{c}{ t^{(|\alpha |_1+d-q)/2}} \cdot \Vert f\Vert _{r, \beta }\cdot \int _{{\mathbb R}^d} (1+|y|^\beta +|z-y|^\beta )\cdot \exp \left( -c\cdot \frac{|z-y|^2}{t}\right) \mathrm{d}z\\&\le \frac{c}{ t^{(|\alpha |_1-q)/2}} \cdot \Vert f\Vert _{r, \beta }\cdot (1+|y|^\beta ), \end{aligned}$$

which completes the proof of (43) in the case \(1\le |\alpha |_1\le s+1\). The case \(\alpha =0\) is treated analogously.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller-Gronbach, T., Yaroslavtseva, L. Deterministic Quadrature Formulas for SDEs Based on Simplified Weak Itô–Taylor Steps. Found Comput Math 16, 1325–1366 (2016). https://doi.org/10.1007/s10208-015-9277-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9277-5

Keywords

Mathematics Subject Classification

Navigation