Abstract
Subtraction-free computational complexity is the version of arithmetic circuit complexity that allows only three operations: addition, multiplication, and division. We use cluster transformations to design efficient subtraction-free algorithms for computing Schur functions and their skew, double, and supersymmetric analogues, thereby generalizing earlier results by P. Koev. We develop such algorithms for computing generating functions of spanning trees, both directed and undirected. A comparison to the lower bound due to M. Jerrum and M. Snir shows that in subtraction-free computations, “division can be exponentially powerful.” Finally, we give a simple example where the gap between ordinary and subtraction-free complexity is exponential.








Similar content being viewed by others
References
A. Aho, J. Hopcroft, and J. Ullman, The design and analysis of computer algorithms, Addison-Wesley, 1975.
A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49–149.
P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory, Springer-Verlag, 1997.
B. Bollobás, Modern graph theory, Springer, 1998.
C. Chan, V. Drensky, A. Edelman, R. Kan, and P. Koev, On computing Schur functions and series thereof, preprint, 2008.
W.-K. Chen, Graph theory and its engineering applications, World Scientific, 1997.
V. I. Danilov, A. V. Karzanov, and G. A. Koshevoy, Systems of separated sets and their geometric models, Uspehi Mat. Nauk, 65 (2010), 67-152 (in Russian); English translation in Russian Math. Surveys 65 (2010), no. 4, 659–740.
J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač, Computing the singular value decomposition with high relative accuracy, Linear Algebra Appl. 299 (1999), no. 1-3, 21–80.
J. Demmel and P. Koev, Accurate and efficient evaluation of Schur and Jack functions, Math. Comp. 75 (2006), no. 253, 223–239.
S. Fomin, Total positivity and cluster algebras, Proceedings of the International Congress of Mathematicians. Volume II, 125–145, Hindustan Book Agency, 2010.
S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc., 15, (2002), 497–529.
I. Goulden and C. Greene, A new tableau representation for supersymmetric Schur functions, J. Algebra 170 (1994), 687–703.
D. Grigoriev, Lower bounds in algebraic complexity, J. Soviet Math. 29 (1985), 1388–1425.
D. Grigoriev and N. Vorobjov, Complexity of Null- and Positivstellensatz proofs, Ann. Pure Appl. Logic 113 (2002), 153–160.
M. Jerrum and M. Snir, Some exact complexity results for straight-line computations over semirings, J. Assoc. Comput. Mach. 29 (1982), 874–897.
P. W. Kasteleyn, Graph theory and crystal physics, in: Graph theory and theoretical physics, 43–110, Academic Press, 1967.
G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchungen der linearen Vertheilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847), 497–508.
P. Koev, Accurate computations with totally nonnegative matrices, SIAM J. Matrix Anal. Appl. 29 (2007), 731–751.
G. L. Litvinov, Idempotent and tropical mathematics; complexity of algorithms and interval analysis. Comput. Math. Appl. 65 (2013), 1483–1496.
I. G. Macdonald, Schur functions: theme and variations, Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), 5–39, Publ. Inst. Rech. Math. Av., 498, Univ. Louis Pasteur, Strasbourg, 1992.
I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 1999.
A. I. Molev, Comultiplication rules for the double Schur functions and Cauchy identities, Electron. J. Combin. 16 (2009), no. 1, Research Paper 13, 44 pp.
H. Narayanan, On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients, J. Algebraic Combin. 24, (2006), 347–354.
G. Pólya, Über positive Darstellung von Polynomen, in: Vierteljschr. Naturforsch. Ges. Zrich 73 (1928), 141–145; see: Collected Papers, vol. 2, MIT Press, Cambridge, 1974, pp. 309–313.
V. Powers and B. Reznick, A new bound for Pólya’s theorem with applications to polynomials positive on polyhedra, J. Pure Appl. Algebra 164 (2001), 221–229.
J. Riordan, Review MR0022160 (9,166f), Math. Reviews, AMS, 1948.
G. Rote, Division-free algorithms for the determinant and the Pfaffian: algebraic and combinatorial approaches. Computational discrete mathematics, 119–135, Lecture Notes in Comput. Sci. 2122, Springer, Berlin, 2001.
C. P. Schnorr, A lower bound on the number of additions in monotone computations, Theor. Comput. Sci. 2, (1976), 305–315.
E. Shamir and M. Snir, Lower bounds on the number of multiplications and the number of additions in monotone computations, Technical Report RC-6757, IBM, 1977.
A. Shpilka and A. Yehudayoff, Arithmetic circuits: a survey of recent results and open questions, Found. Trends Theor. Comput. Sci. 5 (2009), no. 3–4, 207–388 (2010).
R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge University Press, 1999.
V. Strassen, Vermeidung von Divisionen, J. Reine Angew. Math. 264 (1973), 184–202.
W. T. Tutte, Graph theory, Addison-Wesley, 1984.
W. T. Tutte, Graph theory as I have known it, Oxford University Press, 1998.
L. G. Valiant, Negation can be exponentially powerful, Theor. Comput. Sci. 12, (1980), 303–314.
D. G. Wagner, Matroid inequalities from electrical network theory, Electron. J. Combin. 11 (2004/06), no. 2, Article 1, 17 pp.
Acknowledgments
We thank Leslie Valiant for bringing the paper [15] to our attention.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Peter Bürgisser.
We thank the Max-Planck Institut für Mathematik for its hospitality during the writing of this paper. Partially supported by NSF Grant DMS-1101152 (S. F.), RFBR/CNRS Grant 10-01-9311-CNRSL-a, and MPIM (G. K.).
Rights and permissions
About this article
Cite this article
Fomin, S., Grigoriev, D. & Koshevoy, G. Subtraction-Free Complexity, Cluster Transformations, and Spanning Trees. Found Comput Math 16, 1–31 (2016). https://doi.org/10.1007/s10208-014-9231-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-014-9231-y
Keywords
- Subtraction-free
- Arithmetic circuit
- Schur function
- Spanning tree
- Cluster transformation
- Star–mesh transformation