Polyharmonic and Related Kernels on Manifolds: Interpolation and Approximation | Foundations of Computational Mathematics
Skip to main content

Polyharmonic and Related Kernels on Manifolds: Interpolation and Approximation

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This article is devoted to developing a theory for effective kernel interpolation and approximation in a general setting. For a wide class of compact, connected C Riemannian manifolds, including the important cases of spheres and SO(3), and using techniques involving differential geometry and Lie groups, we establish that the kernels obtained as fundamental solutions of certain partial differential operators generate Lagrange functions that are uniformly bounded and decay away from their center at an algebraic rate, and in certain cases, an exponential rate. An immediate corollary is that the corresponding Lebesgue constants for interpolation as well as for L 2 minimization are uniformly bounded with a constant whose only dependence on the set of data sites is reflected in the mesh ratio, which measures the uniformity of the data. The kernels considered here include the restricted surface splines on spheres, as well as surface splines for SO(3), both of which have elementary closed-form representations that are computationally implementable. In addition to obtaining bounded Lebesgue constants in this setting, we also establish a “zeros lemma” for domains on compact Riemannian manifolds—one that holds in as much generality as the corresponding Euclidean zeros lemma (on Lipschitz domains satisfying interior cone conditions) with constants that clearly demonstrate the influence of the geometry of the boundary (via cone parameters) as well as that of the Riemannian metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Aubin, Nonlinear Analysis on Manifolds. Monge–Ampère Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252 (Springer, New York, 1982).

    Book  MATH  Google Scholar 

  2. B.J.C. Baxter, S. Hubbert, Radial basis functions for the sphere, in Recent Progress in Multivariate Approximation, Witten–Bommerholz, 2000. Int. Ser. Numer. Math., vol. 137 (Birkhäuser, Basel, 2001), pp. 33–47.

    Chapter  Google Scholar 

  3. B. Bordin, A.K. Kushpel, J. Levesley, S.A. Tozoni, Estimates of n-widths of Sobolev’s classes on compact globally symmetric spaces of rank one, J. Funct. Anal. 202, 307–326 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15 (Springer, New York, 2008).

    Book  MATH  Google Scholar 

  5. M.D. Buhmann, Multivariate cardinal interpolation with radial-basis functions, Constr. Approx. 6, 225–255 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  6. M.D. Buhmann, C.K. Chui, A note on the local stability of translates of radial basis functions, J. Approx. Theory 74, 36–40 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  7. R.A. DeVore, G.G. Lorentz, Constructive Approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303 (Springer, Berlin, 1993).

    MATH  Google Scholar 

  8. M.P. do Carmo, Riemannian Geometry, Mathematics: Theory & Applications (Birkhäuser Boston, Boston, 1992). Translated from the second Portuguese edition by Francis Flaherty.

    MATH  Google Scholar 

  9. J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in Constructive Theory of Functions of Several Variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976). Lecture Notes in Math., vol. 571 (Springer, Berlin, 1977), pp. 85–100.

    Chapter  Google Scholar 

  10. J. Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les Dm-splines, RAIRO Anal. Numér. 12, 325–334 (1978). vi.

    MathSciNet  MATH  Google Scholar 

  11. N. Dyn, F.J. Narcowich, J.D. Ward, Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold, Constr. Approx. 15, 175–208 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  12. A.R. Edmonds, Angular Momentum in Quantum Mechanics. Investigations in Physics, vol. 4 (Princeton University Press, Princeton, 1957).

    MATH  Google Scholar 

  13. W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on the Sphere. Numerical Mathematics and Scientific Computation (The Clarendon Press. Oxford University Press, New York, 1998). With applications to geomathematics.

    MATH  Google Scholar 

  14. E. Fuselier, G. Wright, Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: Sobolev error estimates, arXiv:1007.2825.

  15. I.M. Gel’fand, R.A. Minlos, Z.J. Šapiro, Predstavleniya gruppy vrashcheni i gruppy Lorentsa, ikh primeneniya (Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958).

    Google Scholar 

  16. K. Grove, P. Petersen, Bounding homotopy types by geometry, Ann. Math. (2) 128, 195–206 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Hangelbroek, Polyharmonic approximation on spheres, Constr. Approx. 33, 77–92 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Hangelbroek, F.J. Narcowich, X. Sun, J.D. Ward, Kernel approximation on manifolds II: the L norm of the L 2 projector, SIAM J. Math. Anal. 43, 662–684 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Hangelbroek, F.J. Narcowich, J.D. Ward, Kernel approximation on manifolds I: bounding the Lebesgue constant, SIAM J. Math. Anal. 42, 1732–1760 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Hangelbroek, D. Schmid, Surface spline approximation on SO(3), Appl. Comput. Harmon. Anal. 31, 169–184 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Helgason, Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83 (American Mathematical Society, Providence, 2000). Integral geometry, invariant differential operators, and spherical functions. Corrected reprint of the 1984 original.

    MATH  Google Scholar 

  22. S. Hofmann, M. Mitrea, M. Taylor, Geometric and transformational properties of Lipschitz domains, Semmes–Kenig–Toro domains, and other classes of finite perimeter domains, J. Geom. Anal. 17, 593–647 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  23. A.K. Kushpel, J. Levesley, S.A. Tozoni, Estimates of n-widths of Besov classes on two-point homogeneous manifolds, Math. Nachr. 282, 748–763 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Levesley, Local stability of translates of polyharmonic splines in even space dimension, Numer. Funct. Anal. Optim. 15, 327–333 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  25. O.V. Matveev, Spline interpolation of functions of several variables and bases in Sobolev spaces, Tr. Mat. Inst. Steklova 198, 125–152 (1992).

    Google Scholar 

  26. H.N. Mhaskar, F.J. Narcowich, J. Prestin, J.D. Ward, L p Bernstein estimates and approximation by spherical basis functions, Math. Comput. 79, 1647–1679 (2010).

    MathSciNet  MATH  Google Scholar 

  27. M. Mitrea, M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal. 163, 181–251 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Müller, Spherical Harmonics. Lecture Notes in Mathematics, vol. 17 (Springer, Berlin, 1966).

    MATH  Google Scholar 

  29. F.J. Narcowich, X. Sun, J.D. Ward, Approximation power of RBFs and their associated SBFs: a connection, Adv. Comput. Math. 27, 107–124 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  30. F.J. Narcowich, J.D. Ward, H. Wendland, Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting, Math. Comput. 74, 743–763 (2005).

    MathSciNet  MATH  Google Scholar 

  31. F.J. Narcowich, J.D. Ward, H. Wendland, Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions, Constr. Approx. 24, 175–186 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Pesenson, A sampling theorem on homogeneous manifolds, Trans. Am. Math. Soc. 352, 4257–4269 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Schmid, Scattered data approximation on the rotation group and generalizations (Shaker Verlag, Aachen, 2009). Dissertation, Fakultät für Mathematik, Technische Universität München.

  34. J.D. Talman, Special Functions: A Group Theoretic Approach (Benjamin, Amsterdam, 1968). Based on lectures by Eugene P. Wigner. With an introduction by Eugene P. Wigner.

    MATH  Google Scholar 

  35. H. Triebel, Theory of Function Spaces. II. Monographs in Mathematics, vol. 84 (Birkhäuser, Basel, 1992).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hangelbroek.

Additional information

Communicated by Albert Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hangelbroek, T., Narcowich, F.J. & Ward, J.D. Polyharmonic and Related Kernels on Manifolds: Interpolation and Approximation. Found Comput Math 12, 625–670 (2012). https://doi.org/10.1007/s10208-011-9113-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9113-5

Keywords

Mathematics Subject Classification (2000)