Missing value estimation for microarray data through cluster analysis | Knowledge and Information Systems Skip to main content

Advertisement

Log in

Missing value estimation for microarray data through cluster analysis

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Microarray datasets with missing values need to impute accurately before analyzing diseases. The proposed method first discretizes the samples and temporarily assigns a value in missing position of a gene by the mean value of all samples in the same class. The frequencies of each gene value in both types of samples for all genes are calculated separately and if the maximum frequency occurs for same expression value in both types, then the whole gene is entered into a subset; otherwise, each portion of the gene of respective sample type (i.e., normal or disease) is entered into two separate subsets. Thus, for each gene expression value, maximum three different clusters of genes are formed. Each gene subset is further partitioned into a stable number of clusters using proposed splitting and merging clustering algorithm that overcomes the weakness of Euclidian distance metric used in high-dimensional space. Finally, similarity between a gene with missing values and centroids of the clusters are measured and the missing values are estimated by corresponding expression values of a centroid having maximum similarity. The method is compared with various statistical, cluster-based and regression-based methods with respect to statistical and biological metrics using microarray datasets to measure its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Alizadeh AA (2000) Distinct types of diffuse large B-cell Lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  Google Scholar 

  2. Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern 28(3):301–315

    Article  Google Scholar 

  3. Bra’s LP, Menezes JC (2007) Improving cluster-based missing value estimation of DNA microarray data. Biomol Eng Elsevier 24:273–282

    Article  Google Scholar 

  4. Brevern AG, Hazout S, Malpertuy A (2004) Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinform. doi:10.1186/1471-2105-5-114

  5. Butte AJ, Ye J (2001) Determining significant fold differences in gene expression analysis. Pac Symp Biocomput 6:6–17

    Google Scholar 

  6. Cai Z, Heydari M, Lin G (2006) Iterated local least squares microarray missing value imputation. Bioinform Comput Biol 4:935–957

    Article  Google Scholar 

  7. Causton HC, Quackenbush J, Brazma A (2004) Microarray gene expression data analysis: a Beginner’s guide, vol 21. Blackwell, Oxford, pp 973–974

  8. Cheng KO, Law NF, Siu WC (2012) Iterative bicluster-based least square framework for estimation of missing values in micro array gene expression data. Pattern Recognit 45(4):1281–1289

    Article  Google Scholar 

  9. Das AK, Sil J (2010) Cluster validation method for stable cluster formation. Can J Artif Intell Mach Learn Pattern Recognit 1(3):26–41

    Google Scholar 

  10. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227

    Article  Google Scholar 

  11. de Brevern AG, Hazout S, Malpertuy A (2004) Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinform. doi:10.1186/1471-2105-5-114

  12. DeRisi J (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet 14(4):457–460

    Article  Google Scholar 

  13. Fu L, Medico E (2007) FLAME: a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. doi:10.1186/1471-2105-8-3

  14. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3):107–145

    Article  MATH  Google Scholar 

  15. Hand DJ, Heard NA (2005) Finding groups in gene expression data. J Biomed Biotechnol 2:215–225

    Article  Google Scholar 

  16. He C, Li HH, Zhao C et al (2015) Triple imputation for microarray missing value estimation. IEEE international conference on bioinformatics and biomedicine (BIBM), pp 208–213

  17. Huynen M, Snel B, Lathe W et al (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 10:1204–1210

    Article  Google Scholar 

  18. Ji R, Liu D, Zhou Z (2011) A bicluster-based missing value imputation method for gene expression data. J Comput Inf Syst 7(13):4810–4818

    Google Scholar 

  19. Kaur A, Singh SS, Kaur SS (2010) Fuzzy clustering based missing value estimation of gene expression data. Computer engineering technology RIMT, pp 122–126

  20. Kent Ridge Bio-medical Dataset. http://datam.i2r.a-star.edu.sg/datasets/krbd

  21. Kim KY, Kim BJ, Yi GS (2004) Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinform. doi:10.1186/1471-2105-5-160

  22. Kim H, Golub GH, Park H (2005) Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2):187–198

    Article  Google Scholar 

  23. Koopmans R, Schaeffer M (2015) Relational diversity and neighborhood cohesion unpacking variety balance and in-group size. Soc Sci Res Elsevier 53:162–176

    Article  Google Scholar 

  24. Luengo J, García S, Herrera F (2011) On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl Inf Syst 32:77–108

    Article  Google Scholar 

  25. Luo J, Yang T, Wang Y (2005) Missing value estimation for microarray data based on fuzzy C-means clustering. In: Proceedings of the 8th international conference on high-performance computing in Asia-Pacific region (HPCASIA’05), pp 611–616

  26. Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654

    Article  Google Scholar 

  27. Meng F, Cai C, Yan H (2014) A bicluster-based Bayesian principal component analysis method for microarray missing value estimation. IEEE J Biomed Health Inform 18(3):863–871

    Article  Google Scholar 

  28. Oba S, Sato MA, Takemasa I et al (2003) A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16):2088–2096

    Article  Google Scholar 

  29. Oh S, Kang DD, Brock GN et al (2011) Biological impact of missing-value imputation on downstream analyses of gene expression profiles. Bioinformatics 27(1):78–86

    Article  Google Scholar 

  30. Pan L, Li J (2010) K-nearest neighbor based missing data estimation algorithm in wireless sensor networks. Wirel Sens Netw Sci Res 2:115–122

    Google Scholar 

  31. Paul A, Sil J (2011) Estimating missing value in microarray gene expression data using fuzzy similarity measure. IEEE international conference on fuzzy systems- Taiwan, pp 27–30

  32. Paul A, Sil J (2011) Missing value estimation in microarray data using Co regulation and similarity of genes. World congress on information and communication technologies, pp 705–710

  33. P’erez MJ, Romero-Campero FJ (2006) A new computational modeling tool for systems biology. Trans Comput Syst Biol 6:176–197

    MathSciNet  Google Scholar 

  34. Pourhashem MM, Kelarestaghi M, Pedram MM (2010) Missing value estimation in microarray data using fuzzy clustering and semantic similarity. Global J Comput Sci Technol 10(12):18–22

    Google Scholar 

  35. Qu Y, Xu S (2004) Supervised cluster analysis for microarray data based on multivariate Gaussian mixture. Bioinformatics 20:1905–1913

    Article  Google Scholar 

  36. Rahman MG, Islam MZ, Bossomaier T, Gao J (2012) Cairad: a co-appearance based analysis for incorrect records and attribute-values detection. IEEE international joint conference on neural networks (IJCNN), pp 1–10. doi:10.1109/IJCNN.2012.6252669

  37. Rahman MG, Islam MZ (2016) Missing value imputation using a fuzzy clustering-based EM approach. Knowl Inf Syst 46:389–422

    Article  Google Scholar 

  38. Schafer JL, Graham JW (2002) Missing data: our view of the state of the art. Psychol Methods 7(2):147–177

    Article  Google Scholar 

  39. Shi F, Zhang D, Chen J et al (2013) Missing value estimation for microarray data by Bayesian principal component analysis and iterative local least squares. Math Probl Eng. doi:10.1155/2013/162938

  40. Suresh RM, Dinakaran K, Valarmathie P (2009) Model based modified k-means clustering for microarray data. ICIME 53:271–273

    Google Scholar 

  41. Troyanskaya O, Cantor M, Sherlock G et al (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525

    Article  Google Scholar 

  42. Tusher VG (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98:5116–5121

    Article  MATH  Google Scholar 

  43. Velarde CC, Escudero R, Zaliz RR (2008) Boolean networks: a study on microarray data discretization. ESTYLF08, Cuencas Mineras (Mieres-Langreo), pp 17–19

  44. Wang H, Wang S (2010) Mining incomplete survey data through classification. Knowl Inf Syst 24(2):221–233

    Article  Google Scholar 

  45. Zahid N, Limouri M, Essaid A (1999) A new cluster-validity for fuzzy clustering. Pattern Recogn 32:1089–1097

    Article  Google Scholar 

  46. Zhang S, Zhang J, Zhu X, Qin Y, Zhang C (2008) Missing value imputation based on data clustering. Trans Comput Sci 1:128–138

    Google Scholar 

  47. Zhang X, Song X, Wang H et al (2008) Sequential local least squares imputation estimating missing value of microarray data. Comput Biol Med 38:1112–1120

    Article  Google Scholar 

  48. Zhang S (2011) Shell-neighbor method and its application in missing data imputation. Appl Intell 35(1):123–133

    Article  Google Scholar 

  49. Zhang S, Jin Z, Zhu X (2011) Missing data imputation by utilizing information within incomplete instances. Syst Softw 84(3):452–459

    Article  Google Scholar 

  50. Zhao O, Fränti P (2014) WB-index: a sum-of-squares based index for cluster validity. Data Knowl Eng Elsevier 92:77–89

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Kumar Pati.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in this paper.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, S.K., Das, A.K. Missing value estimation for microarray data through cluster analysis. Knowl Inf Syst 52, 709–750 (2017). https://doi.org/10.1007/s10115-017-1025-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-017-1025-5

Keywords

Navigation