Decision support system for in-flight emergency events | Cognition, Technology & Work
Skip to main content

Advertisement

Decision support system for in-flight emergency events

  • Original Article
  • Published:
Cognition, Technology & Work Aims and scope Submit manuscript

Abstract

Medical problems during flight have become an important issue as the number of passengers and miles flown continues to increase. The case of an incident in the plane falls within the scope of the healthcare management in the context of scarce resources associated with isolation of medical actors working in very complex conditions, both in terms of human and material resources. Telemedicine uses information and communication technologies to provide remote and flexible medical services, especially for geographically isolated people. Therefore, telemedicine can generate interesting solutions to the medical problems during flight. Our aim is to build a knowledge-based system able to help health professionals or staff members addressing an urgent situation by given them relevant information, some knowledge, and some judicious advice. In this context, knowledge representation and reasoning can be correctly realized using an ontology that is a representation of concepts, their attributes, and the relationships between them in a particular domain. Particularly, a medical ontology is a formal representation of a vocabulary related to a specific health domain. We propose a new approach to explain the arrangement of different ontological models (task ontology, inference ontology, and domain ontology), which are useful for monitoring remote medical activities and generating required information. These layers of ontologies facilitate the semantic modeling and structuring of health information. The incorporation of existing ontologies [for instance, Systematic Nomenclature Medical Clinical Terms (SNOMED CT)] guarantees improved health concept coverage with experienced knowledge. The proposal comprises conceptual means to generate substantial reasoning and relevant knowledge supporting telemedicine activities during the management of a medical incident and its characterization in the context of air travel. The considered modeling framework is sufficiently generic to cover complex medical situations for isolated and vulnerable populations needing some care and support services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(reproduced with permission from SNOMED CT 2012)

Fig. 8
Fig. 9

(reproduced with permission from SNOMED CT 2012)

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abacha AB, Zweigenbaum P (2015) MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inf Process Manag 51(5):570–594

    Article  Google Scholar 

  • AlDossary S, Martin-Khan MG, Bradford NK, Smith AC (2017) A systematic review of the methodologies used to evaluate telemedicine service initiatives in hospital facilities. Int J Med Inform 97:171–194

    Article  Google Scholar 

  • Amirkhani A, Papageorgiou EI, Mohseni A, Mosavi MR (2017) A review of fuzzy cognitive maps in medicine: Taxonomy, methods, and applications. Comput Methods Programs Biomed 142:129–145

    Article  Google Scholar 

  • Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2003) The description logic handbook: theory, implementation, applications. Cambridge University Press, Cambridge. ISBN 0-521-78176-0

    MATH  Google Scholar 

  • Burgun A, Rosier A, Temal L, Jacques J, Messai R, Duchemin L, Deleger L, Grouin C, Van Hille P, Zweigenbaum P, Beuscart R, Delerue D, Dameron O, Mabo P, Henry C (2011) Aide à la décision en télécardiologie par une approche basée ontologie et centrée patient. IRBM 32(3):191–194

    Article  Google Scholar 

  • Cacciabue PC, Cassani M, Licata V, Oddone I, Ottomaniello A (2015) A practical approach to assess risk in aviation domains for safety management systems. Cogn Technol Work 17(2):249–267

    Article  Google Scholar 

  • Chein M, Mugnier M-L (2009) Graph-based knowledge representation: computational foundations of conceptual graphs. Series: Advanced Information and Knowledge Processing. Springer, London

    MATH  Google Scholar 

  • Cho IS, Kim JA, Kim JH, Kim HY, Kim Y (2010) Design and implementation of a standards-based interoperable clinical decision support architecture in the context of the Korean EHR. Int J Med Inform 79:611–622

    Article  Google Scholar 

  • Delaune EF, Lucas RH, Illig P (2003) In-flight medical events and aircraft diversions: one airline’s experience. Aviat Space Environ Med 74:62–68

    Google Scholar 

  • Download the US Edition of SNOMED CT. (Online). https://www.nlm.nih.gov/healthit/snomedct/us_edition.html. Accessed 15 Oct 2016

  • Doumbouya MB, Kamsu-Foguem B, Kenfack H, Foguem C (2018) Argumentation graphs with constraint-based reasoning for collaborative expertise. Future Gener Comput Syst 81:16–29

    Article  Google Scholar 

  • Duarte J, Castro S, Santos M, Abelha A, Machado J (2014) Improving quality of electronic health records with SNOMED. Proc Technol 16:1342–1350

    Article  Google Scholar 

  • El-Sappagh S, Elmogy M, Riad AM (2015) A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis. Artif Intell Med 65(3):179–208

    Article  Google Scholar 

  • Fassbender K, Grotta JC, Walter S, Grunwald IQ, Ragoschke-Schumm A, Saver JL (2017) Mobile stroke units for prehospital thrombolysis, triage, and beyond: benefits and challenges. Lancet Neurol 16(3):227–237

    Article  Google Scholar 

  • Fraccaro P, O’Sullivan D, Plastiras P, O’Sullivan H, Dentone C, Di Biagio A, Weller P (2015) Behind the screens: clinical decision support methodologies—a review. Health Policy Technol 4:29–38

    Article  Google Scholar 

  • Greenes RA (2014) Chapter 2: a brief history of clinical decision support: technical, social, cultural, economic, and governmental perspectives. Book chapter, 2014. In: Greenes R (ed) Clinical decision support (2nd Edition), The road to broad adoption, eBook ISBN: 9780128005422, Hardcover ISBN: 9780123984760, Imprint: Academic Press, Published Date: 15th April 2014, pp 49–109. https://doi.org/10.1016/B978-0-12-398476-0.00002-6

  • Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5:199–220

    Article  Google Scholar 

  • SNOMED CT - Starter Guide, Version: 2014-07-31, Status: Third release (US), publication of the International Health Standards Development Organisation (IHTSDO), Check for the latest version of this guide at www.snomed.org/starterguide.pdf

  • Hinkelbein J, Spelten O, Wetsch WA, Schier R, Neuhaus C (2013) Emergencies in the sky: in-flight medical emergencies during commercial air transport. Trends Anaesth Crit Care 3:179–182

    Article  Google Scholar 

  • International Classification of Diseases (ICD) (2014) World Health Organization. Archived from the original on 12 February 2014. Retrieved 14 March 2014

  • Janghorbani A, Moradi MH (2017) Fuzzy evidential network and its application as medical prognosis and diagnosis models. J Biomed Inform 72:96–107

    Article  Google Scholar 

  • Kamsu-Foguem B (2014a) Systemic modeling in telemedicine. Eur Res Telemed 3(2):57–65

    Article  Google Scholar 

  • Kamsu-Foguem B (2014b) Ontological view in telemedicine. Eur Res Telemed 3(2):67–76

    Article  Google Scholar 

  • Khattak AM, Pervez Z, Khan WA, Khan AM, Latif K, Lee SY (2015) Mapping evolution of dynamic web ontologies. Inf Sci 303:101–119

    Article  MathSciNet  MATH  Google Scholar 

  • Kontogiannis T, Malakis S (2013) Strategies in controlling, coordinating and adapting performance in air traffic control: modelling ‘loss of control’ events. Cogn Technol Work 15(2):153–169

    Article  Google Scholar 

  • Lachter J, Brandt SL, Battiste V, Matessa M, Johnson WW (2017) Enhanced ground support: lessons from work on reduced crew operations. Cogn Technol Work 19(2–3):279–288

    Article  Google Scholar 

  • Lambert R, Cabardis S, Valance J, Borge E, Ducassé J-L, Arzalier J-J (2008) Thrombolyse et accident vasculaire cérébral, à propos d’un cas de secours en mer. Annales Françaises d’Anesthésie et de Réanimation 27(3):249–251

    Article  Google Scholar 

  • La-Ongsri SL-S, Roddick JF (2015) Incorporating ontology-based semantics into conceptual modeling. Inf Syst 52:1–20

    Article  Google Scholar 

  • Lapostolle F, Corège D, Sordelet D, Grave M, Lapandry C, Vivien B, Wipf P, Adnet F (2010) Y a t-il un médecin dans l’avion? La Presse Médicale 39(6):626–631

    Article  Google Scholar 

  • Lapostolle F, Orer P, Guynemer S, Adnet F (2014) Accidents thromboemboliques et voyages aériens: évaluation du risque et stratégie prophylactique (podcast). Le Praticien en Anesthésie Réanimation 18(1):45–51

    Article  Google Scholar 

  • Lee D, Cornet R, Lau F, de Keizer N (2013) A survey of SNOMED CT implementations. J Biomed Inform 46(1):87–96

    Article  Google Scholar 

  • Madkour M, Benhaddou D, Tao C (2016) Temporal data representation, normalization, extraction, and reasoning: a review from clinical domain. Comput Methods Programs Biomed 128:52–68

    Article  Google Scholar 

  • Mahony PH, Myers JA, Larsen PD, Powell DM, Griffiths RF (2011) Symptom-based categorization of in-flight passenger medical incidents. Aviat Space Environ Med 82(12):1131–1137

    Article  Google Scholar 

  • Mattison MLP, Zeidel M (2011) Navigating the challenges of in-flight emergencies. JAMA 2011 Published online May 6, 2011

  • Miled AB (2014) Reusing knowledge based on ontology and organizational model. Procedia Computer Science 35:766–775

    Article  Google Scholar 

  • Minotra D, McNeese MD (2017) Predictive aids can lead to sustained attention decrements in the detection of non-routine critical events in event monitoring. Cogn Technol Work 19(1):161–177

    Article  Google Scholar 

  • Morley JE (2016) Telemedicine: coming to nursing homes in the near future. J Am Med Dir Assoc 17(1):1–3

    Article  MathSciNet  Google Scholar 

  • Mortensen JM, Minty EP, Januszyk M, Sweeney TE, Rector AL, Noy NF, Musen MA (2015) Using the wisdom of the crowds to find critical errors in biomedical ontologies: a study of SNOMED CT. Am Med Inform Assoc 22:640–648. https://doi.org/10.1136/amiajnl-2014-002901

    Article  Google Scholar 

  • Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE (2007) A roadmap for national action on clinical decision support. J Am Med Inform Assoc 14(2):141–145

    Article  Google Scholar 

  • OWL API (2016) http://owlapi.sourceforge.net/. Accessed 15 Oct 2016

  • Pritchett AR, Ockerman JJ (2016) Supporting mixed-initiative emergency flight planning by portraying procedure context information. Cogn Technol Work 18(4):643–655

    Article  Google Scholar 

  • Pulver A, Wei R, Mann C (2016) Locating AED enabled medical drones to enhance cardiac arrest response times. Prehosp Emerg Care 20(3):378–389

    Article  Google Scholar 

  • Sampalli T, Shepherd M, Duffy J, Fox R (2010) An evaluation of SNOMED CT in the domain of complex chronic conditions. Int J Integr Care 24(10):e038

    Google Scholar 

  • Sand M, Bachara FG, Sand D, Mann B (2009) Surgical and medical emergencies on board European aircraft; a retrospective study of 10189 cases. Crit Care 13:R3

    Article  Google Scholar 

  • Schreiber G, Akkermans H, Anjewierden A, de Hoog R, Shadbolt N, van de Velde W, Wielinga B (2000) Knowledge engineering and management: the common KADS methodology. The MIT Press, Cambridge. ISBN 0-262-19300-0

    Google Scholar 

  • Sene A, Kamsu-Foguem B, Rumeau P (2015) Telemedecine framework using case-based reasoning with evidences. Comput Methods Programs Biomed 121(1):21–35

    Article  Google Scholar 

  • Sene A, Kamsu-Foguem B, Rumeau P (2018) Discovering frequent patterns for in-flight incidents. Cogn Syst Res. https://doi.org/10.1016/j.cogsys.2018.01.002

    Google Scholar 

  • Shaner DM (2010) Up in the air-suspending ethical medical practice. N Engl J Med 363(21):1988–1989

    Article  Google Scholar 

  • Sirven JL, Claypool DW, Sahs KL, Wingerchuk DM, Bortz JJ, Drazkowski J, Caselli R, Zanick D (2002) Is there a neurologist on this flight? Neurology 58:1739–1744

    Article  Google Scholar 

  • SNOMED CT® A user guide for General Practice. © Crown Copyright 2012, UK Terminology Centre. www.nhscfh.nhs.uk/uktc

  • Sowa JF (1984) Conceptual structures: information processing in mind and machine. The Systems Programming Series (Hardcover). Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  • Sowa JF (2000) Knowledge representation: logical, philosophical, and computational foundations. Brooks Cole Publishing Co, Pacific Grove. ISBN 0-534-94965-7

    Google Scholar 

  • SQLite Home Page (2016) https://sqlite.org/. Accessed 29 Oct 2016

  • Thiels CA, Aho JM, Zietlow SP, Jenkins DH (2015) Use of unmanned aerial vehicles for medical product transport. Air Med J 34:104–108

    Article  Google Scholar 

  • Tulu B, Chatterjee S, Maheshwari M (2007) Telemedicine taxonomy: a classification tool. Telemed E-Health 13:349–358

    Article  Google Scholar 

  • Valani R, Cornacchia M, Kube D (2010) Flight diversions due to onboard medical emergencies on an international commercial airline. Aviat Space Environ Med 81(11):1037–1040

    Article  Google Scholar 

  • Whetzel PL, Noy NF, Shah NH (2011) BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res 39(suppl 1):W541–W545

    Article  Google Scholar 

  • Wright A, Sittig DF, Ash JS, Erickson JL, Hickman TT, Paterno M, Gebhardt E, McMullen C, Tsurikova R, Dixon BE, Fraser G, Simonaitis L, Sonnenberg FA, Middleton B (2015) Lessons learned from implementing service-oriented clinical decision support at four sites: a qualitative study. Int J Med Inform 84:901–911

    Article  Google Scholar 

  • Yu S, Berry D, Bisbal J (2012) Clinical coverage of an archetype repository over SNOMED-CT. J Biomed Inform 45(3):408–418

    Article  Google Scholar 

  • Welcome to PyMedTermino’s documentation! PyMedTermino 0.2 documentation (2016). http://pythonhosted.org/PyMedTermino/. Accessed 15 Oct 2016

Download references

Author information

Authors and Affiliations

Authors

Contributions

AS contributed to literature search and review, manuscript writing, and study conception and design. BKF contributed to analysis and interpretation of information, knowledge verification and enrichment. PR drafted and critically revised the manuscript.

Corresponding author

Correspondence to Bernard Kamsu-Foguem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sene, A., Kamsu-Foguem, B. & Rumeau, P. Decision support system for in-flight emergency events. Cogn Tech Work 20, 245–266 (2018). https://doi.org/10.1007/s10111-018-0466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10111-018-0466-2

Keywords