Breaking symmetries to rescue sum of squares in the case of makespan scheduling | Mathematical Programming Skip to main content
Log in

Breaking symmetries to rescue sum of squares in the case of makespan scheduling

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The sum of squares (SoS) hierarchy gives an automatized technique to create a family of increasingly tight convex relaxations for binary programs. There are several problems for which a constant number of rounds of this hierarchy give integrality gaps matching the best known approximation algorithms. For many other problems, however, ad-hoc techniques give better approximation ratios than SoS in the worst case, as shown by corresponding lower bound instances. Notably, in many cases these instances are invariant under the action of a large permutation group. This yields the question how symmetries in a formulation degrade the performance of the relaxation obtained by the SoS hierarchy. In this paper, we study this for the case of the minimum makespan problem on identical machines. Our first result is to show that \(\varOmega (n)\) rounds of SoS applied over the configuration linear program yields an integrality gap of at least 1.0009, where n is the number of jobs. This improves on the recent work by Kurpisz et al. (Math Program 172(1–2):231–248, 2018) that shows an analogous result for the weaker \(\hbox {LS}_{+}\) and SA hierarchies. Our result is based on tools from representation theory of symmetric groups. Then, we consider the weaker assignment linear program and add a well chosen set of symmetry breaking inequalities that removes a subset of the machine permutation symmetries. We show that applying \(2^{\tilde{O}(1/\varepsilon ^2)}\) rounds of the \(\text {SA}\) hierarchy to this stronger linear program reduces the integrality gap to \(1+\varepsilon \), which yields a linear programming based polynomial time approximation scheme. Our results suggest that for this classical problem, symmetries were the main barrier preventing the \(\text {SoS}/\text {SA}\) hierarchies to give relaxations of polynomial complexity with an integrality gap of \(1+\varepsilon \). We leave as an open question whether this phenomenon occurs for other symmetric problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is worth noticing that such an inequality might not break all symmetries, that is, we do not require that there is a unique representative of each orbit.

References

  1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 493–500 (1997)

  2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1(1), 55–66 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Askey, R.: Orthogonal polynomials and special functions. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol 21. SIAM (1975)

  4. Au, Y.H.G., Tunçel, L.: Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators. Discrete Optim. 27, 103–129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barak, B., Chan, S.O., Kothari, P.K.: Sum of squares lower bounds from pairwise independence. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC), pp. 97–106 (2015)

  6. Barak, B., Hopkins, S.B., Kelner, J., Kothari, P., Moitra, A., Potechin, A.: A nearly tight sum-of-squares lower bound for the planted clique problem. In: Proceedings of the 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 428–437 (2016)

  7. Barak, B., Moitra, A.: Noisy tensor completion via the sum-of-squares hierarchy. In: Proceedings of the 29th Conference on Learning Theory (COLT), pp. 417–445 (2016)

  8. Blekherman, G., Gouveia, J., Pfeiffer, J.: Sums of squares on the hypercube. Math. Z. 284(1–2), 41–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Handbook on Semidefinite, Conic and Polynomial Optimization, pp 139–169. Springer, Belin (2012)

  10. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  11. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for Integer Programming using the Steinitz Lemma. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 808–816 (2018)

  12. Garg, S.: Quasi-PTAS for scheduling with precedences using LP hierarchies. In: Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 59:1–59:13 (2018)

  13. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. Journal of Pure and Applied Algebra 192(1–3), 95–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goemans, M., Rothvoß, T.: Polynomiality for bin packing with a constant number of item types. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 830–839 (2014)

  15. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. JACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581 (1966)

    Article  MATH  Google Scholar 

  17. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Comput. Complex. 10(2), 139–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theor. Comput. Sci. 259(1–2), 613–622 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Co., Boston (1996)

    MATH  Google Scholar 

  20. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling problems theoretical and practical results. JACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  21. Hopkins, S.B., Kothari, P.K., Potechin, A., Raghavendra, P., Schramm, T., Steurer, D.: The power of sum-of-squares for detecting hidden structures. In: Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 720–731 (2017)

  22. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an milp relaxation with a constant number of integral variables. SIAM J. Discrete Math. 24(2), 457–485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling via sparsification techniques. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 72:1–72:13 (2016)

  24. Karlin, A., Mathieu, C., Nguyen, C.: Integrality gaps of linear and semi-definite programming relaxations for knapsack. In: Proceedings of the 15th International Conference on Integer Programming and Combinatoral Optimization (IPCO), pp. 301–314. (2011)

  25. Kothari, P., O’Donnell, R., Schramm, T.: SOS lower bounds with hard constraints: think global, act local. arXiv:1809.01207 (2018)

  26. Kothari, P.K., Mori, R., O’Donnell, R., Witmer, D.: Sum of squares lower bounds for refuting any CSP. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 132–145 (2017)

  27. Kothari, P.K., Steinhardt, J., Steurer, D.: Robust moment estimation and improved clustering via sum of squares. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1035–1046 (2018)

  28. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 lasserre hierarchy. Math. Oper. Res. 42(1), 135–143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurpisz, A., Leppänen, S., Mastrolilli, M.: Sum of squares hierarchy lower bounds for symmetric formulations. In: Proceedings of the 18th International Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 362–374 (2016)

  30. Kurpisz, A., Leppänen, S., Mastrolilli, M.: An unbounded sum-of-squares hierarchy integrality gap for a polynomially solvable problem. Math. Program. 166(1–2), 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kurpisz, A., Mastrolilli, M., Mathieu, C., Mömke, T., Verdugo, V., Wiese, A.: Semidefinite and linear programming integrality gaps for scheduling identical machines. Math. Program. 172(1–2), 231–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28, 470–496 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope. Math. Oper. Res. 28(4), 871–883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Laurent, M.: Semidefinite representations for finite varieties. Math. Program. 109(1), 1–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry, pp. 157–270. Springer, New York (2009)

  37. Levey, E., Rothvoss, T.: A (1+epsilon)-approximation for makespan scheduling with precedence constraints using LP hierarchies. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 168–177 (2016)

  38. Ma, T., Shi, J., Steurer, D.: Polynomial-time tensor decompositions with sum-of-squares. In: Foundations of Computer Science (FOCS), pp. 438–446 (2016)

  39. Margot, F.: Symmetry in integer linear programming. In: 50 Years of Integer Programming 1958–2008. Springer, Berlin (2010)

  40. Mastrolilli, M.: High degree sum of squares proofs, Bienstock–Zuckerberg hierarchy and cg cuts. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 405–416. Springer, New York (2017)

  41. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Potechin, A.: Sum of squares lower bounds from symmetry and a good story. arXiv:1711.11469 (2017)

  43. Potechin, A., Steurer, D.: Exact tensor completion with sum-of-squares. arXiv:1702.06237 (2017)

  44. Raghavendra, P., Schramm, T., Steurer, D.: High-dimensional estimation via sum-of-squares proofs. arXiv:1807.11419 (2018)

  45. Raymond, A., Saunderson, J., Singh, M., Thomas, R.R.: Symmetric sums of squares over k-subset hypercubes. Math. Program. 167(2), 315–354 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Razborov, A.A.: Flag algebras. J. Symb. Log. 72(4), 1239–1282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Razborov, A.A.: On 3-hypergraphs with forbidden 4-vertex configurations. SIAM J. Discrete Math. 24(3), 946–963 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture notes for MAPSP (2013)

  49. Sagan, B.: The Symmetric Group. Graduate Texts in Mathematics. Springer, New York (2001)

    Book  Google Scholar 

  50. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPS. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 593–602 (2008)

  51. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  52. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41(5), 1318–1341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Verdugo, V., Verschae, J.: Breaking symmetries to rescue sum of squares: the case of makespan scheduling. In: 20th International Conference on Integer Programming and Combinatorial Optimization (IPCO 2019), pp. 427–441 (2019)

  54. Williamson, D., Shmoys, D.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Verdugo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially funded by Fondecyt Projects (Nr. 1170223 and 1181527) and Conicyt (PCI PII 20150140). An extended abstract of this paper appeared in IPCO 2019 [53].

Appendices

Appendix A: Proof of Theorem 4

We show how to prove Theorem 4 following the lines in the work of Raymond et al. [45]. We need a few intermediate results, and the symmetry reduction theorem from Gaterman and Parrilo [13], stated in our setting.

Theorem 10

([13]) Suppose that \(g\in {\mathbb {R}}[y]/\mathbf{sched} \) is a degree-\(\ell \ \text {SoS}\) and \(S_m\)-invariant polynomial. For each partition \(\lambda \vdash m\), let \(\tau _{\lambda }\) be a tableau of shape \(\lambda \) and let \(\{b_1^{\lambda },\ldots ,b_{m_{\lambda }}^{\lambda }\}\) be a basis \(\mathbf{W }_{\tau _{\lambda }}\). Then, for each partition \(\lambda \vdash m\) there exists a \(m_{\lambda }\times m_{\lambda }\) positive semidefinite matrix \(Q_{\lambda }\) such that \(g=\sum _{\lambda \vdash m}\langle Q_{\lambda },Y^{\lambda }\rangle \), where \(Y^{\lambda }_{ij}=\text {sym}(b_i^{\lambda }b_j^{\lambda })\).

Given two partitions \(\lambda ,\mu \), we say that \(\lambda \unrhd \mu \) if \(\lambda \ge _{\text {lex}} \mu \) and the number of parts of \(\mu \) is at least the number of parts of \(\lambda \). The following lemma is a variant of [45, Theorem 2] for the action of the symmetric group in our setting. Together with the theorem of Gatermann and Parrilo this yields Theorem 4.

Lemma 18

The dimension \(m_{\lambda }\) of \({\mathbf{Q}}^{\ell }_{\lambda }\) in the isotypic decomposition of \(\mathbf{Q}^{\ell }\) is zero unless \(\lambda \ge _{\text {lex}} (m-\ell ,1,\ldots ,1)\).

Proof

Let \(y_S\) be a monomial of degree at most \(\ell \) with \(S=\{(i_k,C_k):k\in [\ell ]\}\). In particular, \(|\{i_k:k\in [\ell ]\}|\le \ell \). Let \(\tau \) be any tableau with shape \((m-\ell ,1,\ldots ,1)\), where the tail of \(\tau \) contains every elements of \(\{i_k:k\in [\ell ]\}\). The subgroup \({{\mathcal {R}}}_{\tau }\) fixes S, therefore \(y_S\in {\mathbf{W}}^{\ell }_{\tau }\), and we have then

$$\begin{aligned} {\mathbf{Q}}^{\ell }\subseteq \bigoplus _{\tau :\text {shape}(\tau ) =(m-\ell ,1,\ldots ,1)}{\mathbf{W}}^{\ell }_{\tau }\subseteq \bigoplus _{\lambda \unrhd (m-\ell ,1,\ldots ,1)}{\mathbf{Q}}^{\ell }_{\lambda }, \end{aligned}$$

where the second containment holds by [45, Lemma 1]. To conclude, observe that if \(\lambda \unrhd (m-\ell ,1,\ldots ,1)\) then \(\lambda _1\ge m-\ell \). Since \(\lambda \vdash m\), the maximum number of parts for \(\lambda \) is \(m-\lambda _1\le \ell \), that is, \(\lambda \) has at most \(\ell +1\) parts. Therefore, \(\lambda \unrhd (m-\ell ,1,\ldots ,1)\) if and only if \(\lambda \ge _{\text {lex}} (m-\ell ,1,\ldots ,1)\). \(\square \)

Proof of Theorem 4

Let \(g\in {\mathbb {R}}[y]/\mathbf{sched} \) be a degree-\(\ell \ \text {SoS}\) and \(S_m\)-invariant polynomial. By Theorem 10 and Lemma 18, for each \(\lambda \in \varLambda _{\ell }\) there exists a positive semidefinite matrix \(Y^{\lambda }\) such that \(g=\sum _{\lambda \in \varLambda _{\ell }}\langle Q_{\lambda },Y^{\lambda }\rangle \). Since \(\{b_1^{\lambda },\ldots ,b_{m_{\lambda }}^{\lambda }\}\subseteq \text {span}({{\mathcal {P}}}^{\lambda })\), there exists a real matrix \({{\mathcal {T}}}_{\lambda }\) such that \({{\mathcal {T}}}_{\lambda }(p_1^{\lambda }, \ldots ,p_{\ell _{\lambda }}^{\lambda })=(b_1^{\lambda },\ldots ,b_{m_{\lambda }}^{\lambda })\). Consider the congruent transformation \(M_{\lambda } ={{\mathcal {T}}}_{\lambda }^{\top }Q_{\lambda }{{\mathcal {T}}}_{\lambda }\). In particular, \(M_{\lambda }\) is also positive semidefinite. Furthermore, \(\mathbf{b}^{\top }Q_{\lambda }\mathbf{b}=({{\mathcal {T}}}_{\lambda }\mathbf{p})^{\top }Q_{\lambda }({{\mathcal {T}}}_{\lambda }{} \mathbf{p})=\mathbf{p}^{\top }M_{\lambda }{} \mathbf{p},\) where \(\mathbf{b}=(b_1^{\lambda },\ldots ,b_{m_{\lambda }}^{\lambda })\) and \(\mathbf{p}=(p_1^{\lambda },\ldots ,p_{\ell _{\lambda }}^{\lambda })\). That is, \(g=\sum _{\lambda \in \varLambda _{\ell }}\langle Q_{\lambda },Y^{\lambda }\rangle =\sum _{\lambda \in \varLambda _{\ell }}\langle M_{\lambda },Z^{\lambda }\rangle \). \(\square \)

Appendix B: SoS Lower Bound for the Assignment Linear Program

We now show that the lower bound of Theorem 1 translates to the assignment linear program. Recall that the r-th level of the SoS hierarchy corresponds to a semidefinite program with variables \(y_S\) for any subset \(S\subseteq E\) with \(|S|\le r\). The inequalities defining this program can be obtained by considering properties (SoS.1)–(SoS.4) in the definition of degree-r SoS pseudoexpectations and identifying \(\widetilde{{\mathbb {E}}}(x_S)=y_S\); see for example [40] for details. For any polytope \(P\subseteq [0,1]^E\), we denote by \(\text {SoS}{}_r(P)\) the projection of the r-th level of the SoS hierarchy over \(y_i=y_{\{i\}}\) for each \(i\in E\). Au and Tunçel [4, Proposition 1] showed that for any polytope \(P\subseteq [0,1]^E\), if \(L:{\mathbb {R}}^E\rightarrow {\mathbb {R}}^E\) is an affine transformation such that \(L(x)\in [0,1]^E\) for all elements in the unit hypercube \(x\in [0,1]^E\), then \(\text {SoS}{}_r(L(P))= L(\text {SoS}{}_r(P))\). In our case, we consider the configuration linear program and the assignment linear program within the same space. Let T be a target makespan and consider

$$\begin{aligned} P = {\mathbb {R}}^{[m]\times J}\times \text {clp}{}(T)= \{(x,y)\in {\mathbb {R}}^{[m] \times J}\times {\mathbb {R}}^{[m]\times {{\mathcal {C}}}}: y \in \text {clp}{}(T)\}. \end{aligned}$$

We define the projection \(L(x,y)=(x',0)\) where \(x'\) is defined as

$$\begin{aligned} x'_{ij} = \frac{1}{n_{p_j}}\sum _{C\in {{\mathcal {C}}}} m(C,p_j) \cdot y_{iC} \quad \text {for all } i\in [m]\text { and for all }j\in J. \end{aligned}$$

Notice that \(x'\) belongs to the assignment linear program, and hence \(L(P)\subseteq \text {assign}(T)\times [0,1]^{[m]\times {{\mathcal {C}}}}\) is within the unit hypercube and the result by Au and Tunçel can be applied. Therefore,

$$\begin{aligned} L(\text {SoS}{}_{r+1}(P))= \text {SoS}{}_{r+1}(L(P))\subseteq \text {SoS}{}_r(\text {assign}(T)\times [0,1]^{[m]\times {{\mathcal {C}}}}), \end{aligned}$$

where the last inclusion follows since \(L(P)\subseteq \text {assign}(T)\times [0,1]^{[m]\times {{\mathcal {C}}}}\) and the general property of the next lemma. We remark that this is enough to get an integrality gap of 1.0009 for \(\varOmega (n)\) rounds of the SoS hierarchy applied to the assignment linear program.

Lemma 19

If P and Q are two polytopes with \(P\subseteq Q\), then \(\text {SoS}_{r+1}{}(P)\subseteq \text {SoS}_r{}(Q)\).

Proof

Let us assume that \(P =\{x\in {\mathbb {R}}^n:Ax\le b\}\) and \(Q=\{x\in {\mathbb {R}}^n:Cx\le d\}\) for some \(A\in {\mathbb {R}}^{m\times n},b\in {\mathbb {R}}^m\), \(C\in {\mathbb {R}}^{p\times n}\) and \(d\in {\mathbb {R}}^{p}\). Let \(a_i^{\top }\) be the i-th row of A and \(c_i^{\top }\) the i-th row of C. We will show that a degree-\((r+1)\) SoS pseudoexpectation for P is also a degree-r SoS pseudoexpectation for Q. Indeed, recall that if \(P\subseteq Q\), then every inequality \(c_i^{\top } x\le d_i\), where \(c_i\) is the i-th row of C, is a valid inequality for P. Hence, by Farkas lemma, for each row \(i\in [p]\) there exists a non-negative vector \(\gamma \in {\mathbb {R}}^m\) such that \(c_i=\gamma ^{\top } A\) and \(\gamma ^{\top } b \le d_i\). Let \(\widetilde{{\mathbb {E}}}\) be a degree-\((r+1)\) SoS pseudoexpectation for P. We need to show that property (SoS.3) is satisfied for every inequality \((d_i-c_i^{\top }x)\ge 0\), with \(i\in [p]\). Let \(f\in {\mathbb {R}}[x]/{{\mathbf{I}}}_n\) with \(\deg \left( \overline{f^2(d_i-c_i^{\top }x)}\right) \le r\). By basic algebraic manipulation it holds that

$$\begin{aligned} \widetilde{{\mathbb {E}}}(f^2(d_i-c_i^{\top }x)) = (d_i - \gamma ^{\top }b)\widetilde{{\mathbb {E}}}(f^2) +\sum _{j=1}^m\gamma _j \widetilde{{\mathbb {E}}}(f^2(b_j-a_j^{\top }x)) \ge 0, \end{aligned}$$

where the last inequality follows from the construction of \(\gamma \), the fact that for each \(j\in [m]\) we have \(\deg \left( \overline{f^2(b_j-a_j^{\top }x)}\right) \le r+1\), and hence \(\widetilde{{\mathbb {E}}}(f^2(b_j-a_j^{\top }x))\ge 0\) and \(\widetilde{{\mathbb {E}}}(f^2)\ge 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdugo, V., Verschae, J. & Wiese, A. Breaking symmetries to rescue sum of squares in the case of makespan scheduling. Math. Program. 183, 583–618 (2020). https://doi.org/10.1007/s10107-020-01511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01511-3

Keywords

Mathematics Subject Classification

Navigation