Abstract
An adaptive regularization algorithm using inexact function and derivatives evaluations is proposed for the solution of composite nonsmooth nonconvex optimization. It is shown that this algorithm needs at most \(O(|\log (\epsilon )|\,\epsilon ^{-2})\) evaluations of the problem’s functions and their derivatives for finding an \(\epsilon \)-approximate first-order stationary point. This complexity bound therefore generalizes that provided by Bellavia et al. (Theoretical study of an adaptive cubic regularization method with dynamic inexact Hessian information. arXiv:1808.06239, 2018) for inexact methods for smooth nonconvex problems, and is within a factor \(|\log (\epsilon )|\) of the optimal bound known for smooth and nonsmooth nonconvex minimization with exact evaluations. A practically more restrictive variant of the algorithm with worst-case complexity \(O(|\log (\epsilon )|+\epsilon ^{-2})\) is also presented.
Similar content being viewed by others
Notes
For adaptive regularization with Lipschitz model and dynamic accuracy.
References
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)
Bellavia, S., Gurioli, G., Morini, B.: Theoretical study of an adaptive cubic regularization method with dynamic inexact Hessian information. arXiv:1808.06239 (2018)
Bellavia, S., Gurioli, G., Morini, B., Toint, P.L.: Adaptive regularization algorithms with inexact evaluations for nonconvex optimization. SIAM J. Optim. 29(4), 2881–2915 (2020)
Bergou, E., Diouane, Y., Kungurtsev, V., Royer, C.W.: A subsampling line-search method with second-order results. arXiv:1810.07211 (2018)
Birgin, E.G., Gardenghi, J.L., Martínez, J.M., Santos, S.A., Toint, P.L.: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Math. Program. Ser. A 163(1), 359–368 (2017)
Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis of a stochastic trust region method via supermartingales. INFORMS J. Opt. 1(2), 92–119 (2019)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Carter, R.G.: Numerical experience with a class of algorithms for nonlinear optimization using inexact function and gradient information. SIAM J. Sci. Stat. Comput. 14(2), 368–388 (1993)
Cartis, C., Gould, N.I.M., Toint, P.L.: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming. SIAM J. Optim. 21(4), 1721–1739 (2011)
Cartis, C., Gould, N.I.M., Toint, P.L.: Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints. SIAM J. Opt. (to appear) (2020)
Cartis, C., Scheinberg, K.: Global convergence rate analysis of unconstrained optimization methods based on probabilistic models. Math. Program. Ser. A 159(2), 337–375 (2018)
Chen, X., Jiang, B., Lin, T., Zhang, S.: On adaptive cubic regularization Newton’s methods for convex optimization via random sampling. arXiv:1802.05426 (2018)
Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2000)
Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM J. Optim. 29(1), 207–239 (2019)
Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)
Duchi, J., Ruan, F.: Stochastic methods for composite and weakly convex optimization problems. SIAM J. Optim. 28(4), 3229–3259 (2018)
Gratton, S., Sartenaer, A., Toint, P.L.: Recursive trust-region methods for multiscale nonlinear optimization. SIAM J. Optim. 19(1), 414–444 (2008)
Gratton, S., Toint, P.L.: A note on solving nonlinear optimization problems in variable precision. Optim. Methods Softw. (2020, to appear)
Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)
Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63, 1–28 (2016)
Kouri, D.P., Heinkenscloss, M., Rizdal, D., van Bloemen-Waanders, B.G.: Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty. SISC 36(6), A3011–A3029 (2014)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. Math. Program. Ser. A 158, 501–546 (2016)
Liu, L., Liu, X., Hsieh, C.-J., Tao, D.: Stochastic second-order methods for non-convex optimization with inexact Hessian and gradient. arXiv:1809.09853 (2018)
Nesterov, Y.: Introductory Lectures on Convex Optimization. Applied Optimization. Kluwer Academic Publishers, Dordrecht (2004)
Reddi, S., Sra, S., Póczos, B., Smola, A.: Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 1145–1153. Curran Associates, Inc., Red Hook (2016)
Roosta-Khorani, F., Mahoney, M.W.: Sub-sampled Newton methods. Math. Program. Ser. A 174(1–2), 293–326 (2019)
Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58(1), 267–288 (1996)
Wang, N., Choi, J., Brand, D., Chen, C.-Y., Gopalakrishnan, K.: Training deep neural networks with 8-bit floating point numbers. In: 32nd Conference on Neural Information Processing Systems (2018)
Xu, P., Roosta-Khorasani, F., Mahoney, M.W.: Newton-type methods for non-convex optimization under inexact Hessian information. arXiv:1708.07164v3 (2017)
Yuan, Y.: Conditions for convergence of trust region algorithms for nonsmooth optimization. Math. Program. 31(2), 220–228 (1985)
Acknowledgements
The third author is grateful to the ENSEEIHT (INP, Toulouse) for providing a friendly research environment for the duration of this research project.
Funding
Funding was provided by Agence Nationale de Recherche (FR) (Grant No. ANR-11-LABX-0040-CIMI).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Ph. L. Toint: Partially supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02.
Rights and permissions
About this article
Cite this article
Gratton, S., Simon, E. & Toint, P.L. An algorithm for the minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity. Math. Program. 187, 1–24 (2021). https://doi.org/10.1007/s10107-020-01466-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-020-01466-5