A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems | Mathematical Programming Skip to main content
Log in

A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems

  • Short Communication
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We prove a new local upper Lipschitz stability result and the associated local error bound for solutions of parametric Karush–Kuhn–Tucker systems corresponding to variational problems with Lipschitzian base mappings and constraints possessing Lipschitzian derivatives, and without any constraint qualifications. This property is equivalent to the appropriately extended to this nonsmooth setting notion of noncriticality of the Lagrange multiplier associated to the primal solution, which is weaker than second-order sufficiency. All this extends several results previously known only for optimization problems with twice differentiable data, or assuming some constraint qualifications. In addition, our results are obtained in the more general variational setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Andreani, R., Birgin, E., Martínez, J., Schuverdt, M.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dontchev, A., Rockafellar, R.: Characterizations of Lipschitzian stability in nonlinear programming. In: Fiacco, A. (ed.) Mathematical Programming with Data Perturbations, pp. 65–82. Marcel Dekker, NY (1997)

    Google Scholar 

  3. Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9, 14–32 (1999)

    Article  MathSciNet  Google Scholar 

  4. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  5. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems. Math. Program. 125, 47–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernández, D., Solodov, M.: Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition. SIAM J. Optim. 22, 384–407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hager, W., Gowda, M.: Stability in the presence of degeneracy and error estimation. Math. Program. 85, 181–192 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Izmailov, A.: Solution sensitivity for Karush–Kuhn–Tucker systems with nonunique Lagrange multipliers. Optimization 95, 747–775 (2010)

    Article  MathSciNet  Google Scholar 

  10. Izmailov, A., Pogosyan, A., Solodov, M.: Semismooth SQP method for equality-constrained optimization problems with an application to the lifted reformulation of mathematical programs with complementarity constraints. Comput. Optim. Appl. 26, 847–872 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Izmailov, A., Pogosyan, A., Solodov, M.: Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints. Comput. Optim. Appl. 51, 199–221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Izmailov, A., Solodov, M.: The theory of 2-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions. Math. Oper. Res. 27, 614–635 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Izmailov, A., Solodov, M.: Karush–Kuhn–Tucker systems: regularity conditions, error bounds, and a class of Newton-type methods. Math. Program. 95, 631–650 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Izmailov, A., Solodov, M.: Newton-type methods for optimization problems without constraint qualifications. SIAM J. Optim. 16, 210–228 (2004)

    Article  MathSciNet  Google Scholar 

  15. Izmailov, A., Solodov, M.: On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions. Math. Program. 117, 271–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Izmailov, A., Solodov, M.: On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers. Math. Program. 126, 231–257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Izmailov, A., Solodov, M.: Stabilized SQP revisited. Math. Program. 133, 93–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klatte, D.: Nonlinear Optimization Under Data Perturbations, pp. 204–235. Springer, Berlin (1992)

    Google Scholar 

  19. Klatte, D.: Upper Lipschitz behavior of solutions to perturbed \(\text{ C}^{1,\, 1}\) programs. Math. Program. 88, 285–311 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Kluwer, Dordrecht (2002)

    Google Scholar 

  21. Klatte, D., Tammer, K.: On the second order sufficient conditions to perturbed \({\rm C}^{1,\, 1}\) optimization problems. Optimization 19, 169–180 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Levy, A.: Errata in implicit multifunction theorems for the sensitivity analysis of variational conditions. Math. Program. 86, 439–441 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mordukhovich, B.: Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis. Trans. Am. Math. Soc. 343, 609–657 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, J.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MATH  Google Scholar 

  25. Qi, L.: \({\rm LC}^1\) functions and \({\rm LC}^1\) optimization problems. Technical Report AMR 91/21, School of Mathematics, The University of New South Wales, Sydney (1991)

  26. Qi, L.: Superlinearly convergent approximate Newton methods for \({\rm LC}^1\) optimization problems. Math. Program. 64, 277–294 (1994)

    Article  MATH  Google Scholar 

  27. Robinson, S.: Generalized equations and their solution. Part II: applications to nonlinear programming. Math. Program. Study 19, 200–221 (1982)

    Article  MATH  Google Scholar 

  28. Rockafellar, R.: Computational schemes for solving large-scale problems in extended linear-quadratic programming. Math. Program. 48, 447–474 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rockafellar, R., Wets, J.: Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time. SIAM J. Control Optim. 28, 810–922 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stein, O.: Lifting mathematical programs with complementarity constraints. Math. Program. 131, 71–94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ward, D.: Characterizations of strict local minima and necessary conditions for weak sharp minima. Optim. Theory Appl. 80, 551–571 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wright, S.: An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM J. Optim. 15, 673–696 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees and the Associate Editor for useful comments that led to an improved version of the original submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Solodov.

Additional information

Research of the first two authors is supported by the Russian Foundation for Basic Research Grant 10-01-00251. The third author is supported in part by CNPq Grant 302637/2011-7, by PRONEX-Optimization, and by FAPERJ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmailov, A.F., Kurennoy, A.S. & Solodov, M.V. A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems. Math. Program. 142, 591–604 (2013). https://doi.org/10.1007/s10107-012-0586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0586-z

Keywords

Mathematics Subject Classification (2000)

Navigation