On the use of piecewise linear models in nonlinear programming | Mathematical Programming
Skip to main content

On the use of piecewise linear models in nonlinear programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper presents an active-set algorithm for large-scale optimization that occupies the middle ground between sequential quadratic programming and sequential linear-quadratic programming methods. It consists of two phases. The algorithm first minimizes a piecewise linear approximation of the Lagrangian, subject to a linearization of the constraints, to determine a working set. Then, an equality constrained subproblem based on this working set and using second derivative information is solved in order to promote fast convergence. A study of the local and global convergence properties of the algorithm highlights the importance of the placement of the interpolation points that determine the piecewise linear model of the Lagrangian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower E.L., Georg K.: Piecewise linear methods for nonlinear equations and optimization. J. Comput. Appl. Math. 124(1–2), 245–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartels R.H., Conn A.R., Sinclair J.W.: Minimization techniques for piecewise differentiable functions—the L1 solution to an overdetermined linear system. SIAM J. Numer. Anal. 15, 224–241 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Byrd R.H., Gould N.I.M., Nocedal J., Waltz R.A.: An algorithm for nonlinear optimization using linear programming and equality constrained subproblems. Math. Program. Ser. B 100(1), 27–48 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Byrd R.H., Gould N.I.M., Nocedal J., Waltz R.A.: On the convergence of successive linear-quadratic programming algorithms. SIAM J. Optim. 16(2), 471–489 (2006)

    Article  MathSciNet  Google Scholar 

  5. Byrd R.H., Nocedal J., Schnabel R.: Representations of quasi-newton matrices and their use in limited memory methods. Math. Program. 63(4), 129–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrd R.H., Nocedal J., Waltz R.A.: Steering exact penalty methods. Optim. Methods Softw. 23(2), 197–213 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrd, R.H., Nocedal, J., López-Calva, G.: A Line Search Exact Penalty Method Using Steering Rules. Technical Report, Optimization Center, Northwestern University (2009)

  8. Byrd, R.H., Nocedal, J., Waltz, R.A., Wu, Y.: On the Implementation of a Method for Nonlinear Programming Based on Piecewise Linear Models. Technical Report, Optimization Center, Northwestern University (2011). Posted on Optimization Online

  9. Byrd R.H., Waltz R.A.: An active-set algorithm for nonlinear programming using parametric linear programming. Optim. Methods Softw. 26(1), 47–66 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Celis M.R., Dennis J.E., Tapia R.A.: A trust region strategy for nonlinear equality constrained optimization. In: Boggs, P.T., Byrd, R.H., Schnabel, R.B. (eds) Numerical Optimization 1984, SIAM, Philadelphia (1985)

    Google Scholar 

  11. Chen L., Goldfarb D.: An interior-point piecewise linear penalty method for nonlinear programming. Math. Program. 128(1–2), 73–122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chin C.M., Fletcher R.: On the global convergence of an SLP-filter algorithm that takes EQP steps. Math. Program. Ser. A 96(1), 161–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conn A.R., Gould N.I.M., Toint Ph.: Trust-Region Methods MPS-SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  14. Dantzig G.B.: Recent advances in linear programming. Manag. Sci. 2, 131–144 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fletcher R., Leyffer S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fletcher R., Sainz de la Maza E.: Nonlinear programming and nonsmooth optimization by successive linear programming. Math. Program. 43(3), 235–256 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Friedlander, M.P., Gould, N.I.M., Leyffer, S., Munson, T.S.: A Filter Active-Set Trust-Region Method. Technical Report Preprint ANL/MCS-P1456-097, Argonne National Laboratory (2007)

  18. Gill P.E., Murray W., Saunders M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gould, N.I.M., Robinson, D.P.: A Second Derivative SQP Method: Global Convergence. Technical Report NA-08/18, Oxford University Computing Laboratory (2008, Nov) [to appear in SIAM J. Optim.]

  20. Gould, N.I.M., Robinson, D.P.: A Second Derivative SQP Method: Local Convergence. Technical Report NA-08/21, Oxford University Computing Laboratory (2008, Dec) [to appear in SIAM J. Optim.]

  21. Hadley G.: Nonlinear and Dynamic Programming. Addison-Wesley, Reading (1964)

    MATH  Google Scholar 

  22. Morales, J.L., Nocedal, J., Wu, Y.: A Sequential Quadratic Programming Algorithm with an Additional Equality Constrained Phase. Technical Report OTC-05, Northwestern University (2008) [to appear in IMA J. Numer. Anal.]

  23. Nocedal J., Wright S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, Berlin (1999)

    Google Scholar 

  24. Oberlin C., Wright S.J.: Active constraint identification in nonlinear programming. SIAM J. Optim. 17, 577–605 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Powell M.J.D., Yuan Y.: A trust region algorithm for equality constrained optimization. Math. Program. 49(2), 189–213 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Waltz, R.A.: Algorithms for Large-Scale Nonlinear Optimization. PhD thesis, Department of Electrical and Computer Engineering, Northwestern University, Evanston (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Nocedal.

Additional information

Richard H. Byrd was supported by National Science Foundation grant CMMI 0728190 and Department of Energy grant DE-SC0001774. Jorge Nocedal and Yuchen Wu were supported by Department of Energy grant DE-FG02-87ER25047-A004 and National Science Foundation grant DMS-0810213. Richard A. Waltz was supported by National Science Foundation grant CMMI 0728036.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrd, R.H., Nocedal, J., Waltz, R.A. et al. On the use of piecewise linear models in nonlinear programming. Math. Program. 137, 289–324 (2013). https://doi.org/10.1007/s10107-011-0492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0492-9

Mathematics Subject Classification (2000)