Empirical estimation of shear wave velocity from in situ tests on soil formations in Greece | Bulletin of Engineering Geology and the Environment Skip to main content
Log in

Empirical estimation of shear wave velocity from in situ tests on soil formations in Greece

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Shear wave velocity is an important input parameter for dynamic ground analysis. Standard penetration test blow counts, static cone penetration tip resistance and shear wave velocity (VS) obtained by the cross-hole technique have been collected from a large number of projects in Greece over the last 10 years and regression analysis used to develop empirical relationships. The paper discusses the factors which influence the derived equations, in particular the relevance of the soil type.

Résumé

La vitesse des ondes de cisaillement est un paramètre important pour l’analyse du comportement dynamique des sols. Les résultats d’essais pénétrométriques SPT, les résistances de pointe au pénétromètre statique et les mesures de vitesses d’ondes de cisaillement (VS) obtenues par les techniques cross-hole ont été rassemblés à partir d’un nombre important de projets en Grèce sur les dix dernières années. Des analyses de régression ont été réalisées pour obtenir des relations empiriques. L’article discute des facteurs explicatifs relatifs aux équations obtenues, en considérant en particulier les types de sols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anagnostopoulos A, Koukis G, Sabatakakis N, Tsiambaos G (2003) Empirical correlations of soil parameters based on cone penetration tests (CPT) for Greek soils. Geotech Geol Eng 21:377–387

    Article  Google Scholar 

  • Andrus RD, Hayati H, Mohanan NP (2009) Correcting liquefaction resistance for aged sands using measured to estimated velocity ratio. J Geotech Geoenviron Eng 135(6):735–744

    Article  Google Scholar 

  • ASTM (1991) Standard test methods for cross hole seismic testing (D 4428/D4428/M)

  • ASTM (1992) Standard test method for penetration test and split-barrel sampling of soils (D 1586)

  • ASTM (1994) Standard test method for deep, quasi-static cone and friction-cone penetration tests of soil (D 3441)

  • Athanasopoulos G (1994) Empirical correlations VSO–NSPT and Go–NSPT from test results on soils of Greece. Techika Chronika 14(1):7–28 in Greek

    Google Scholar 

  • Baldi G, Belloti R, Ghiona VN, Jamiolkowski M, Pasqualini E (1986) Interpretation of CPT’s and CPTU’s—2nd part: drained penetration of sands. IV International geotechnical seminar on field instrumentation and in situ measurements, Nayang Technological Inst., Singapore, pp 143–156

  • Borcherdt RD (1994) Estimates of site dependent response spectra for design methodology and justifications. Earthq Spectra 10(4):617–654

    Article  Google Scholar 

  • Bouckovalas G, Kalteziotis N, Sabatakakis N, Zervogiannis H (1989) Shear wave velocity in a very soft clay—measurements and correlations. In: Proceedings of the 12th international conference on soil mechanics and foundation engineering, Rio de Janeiro, 13–18 August, pp 191–194

  • Burland JB (1989) Small is beautiful—the stiffness of soils at small strains. Can Geotech J 26(4):499–516

    Article  Google Scholar 

  • Christoulas S, Kalteziotis N, Tsiambaos G, Sabatakakis N (1987) Engineering geology of soft clays. Examples from Greece. Embankment on soft clays, Bulletin of the Public Works Research Center, Special Publication, pp 3–33

  • Dobry R, Borcherdt RD, Crouse CB, Idriss IM, Joyner WB, Martin GR, Power MS, Rinne EE, Seed RB (2000) New site coefficient and site classification system used in recent building code provisions. Earthq Spectra 16(1):41–67

    Article  Google Scholar 

  • EN-ISO-22476-3 (2003) Geotechnical investigation and testing–Field testing—Part 3: standard penetration test. Technical Committee CEN/TC 341

  • Fujiwara T (1972) Estimation of ground movements in actual destructive earthquakes. In: Proceedings of the 4th European Symposium on Earthquake Engineering, London, pp 125–132

  • Hasancebi N, Ulusay R (2007) Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bull Eng Geol Environ 66:203–213

    Article  Google Scholar 

  • Hayati H, Andrus RD (2009) Updated liquefaction resistance correction factors for aged sands. J Geotech Geoenviron Eng 135(11):1682–1692

    Article  Google Scholar 

  • Imai T (1977) P and S-wave velocities of the ground in Japan. In: Proceedings of the IX international conference on soil mechanics and foundation engineering, Japan, vol 2:127–132

  • Imai T, Tonouchi K (1982) Correlation of N-value with S-wave velocity and shear modulus. In: Proceedings of the 2nd European symposium of penetration testing, Amsterdam, pp 57–72

  • Imai T, Yoshimura Y (1970) Elastic wave velocity and soil properties in soft soil (in Japanese). Tsuchito-Kiso 18(1):17–22

    Google Scholar 

  • Jafari MK, Shafiee A, Ramzkhah A (2002) Dynamic properties of the fine grained soils in South of Tehran. J Seismol Earthq Eng 4(1):25–35

    Google Scholar 

  • Jamiolkowski M, Ghionna VN, Lancellotta R, Pasqualini E (1988) New correlations of penetration tests for design practice. In: Proceedings of the 1st international symposium on penetration testing, ISOPT-1, Orlando, vol 1, pp 263–296

  • Jongmans D, Campillo M, Demanet D (1990) The use of surface waves inversion and seismic reflection methods for engineering applications. In: Balkema AA (ed) Proceedings of the 6th congress of international association for engineering geology and the environment (IAEG), Amsterdam, pp 979–985

  • Kalteziotis N, Sabatakakis N, Vassiliou J (1992) Evaluation of dynamic characteristics of Greek soil formations. In: Proceedings of the 2nd Hellenic conference on geotechnical engineering, vol 2, pp 239–246 (in Greek)

  • Kitsunezaki C (1980) A new method for shear-wave logging. Geophysics 45(10):1489–1506

    Article  Google Scholar 

  • Kokusho T, Yoshida Y (1997) SPT N-value and S-wave velocity for gravelly soils with different grain size distribution. Soils Found 37(4):107–113

    Google Scholar 

  • Koukis G, Sabatakakis N, Tsiambaos G, Katrivesis N (2005) Engineering geological approach to the evaluation of seismic risk in metropolitan regions: case study of Patras, Greece. Bull Eng Geol Environ 64(3):219–235

    Article  Google Scholar 

  • Lee SHH (1992) Analysis of the multicollinearity of regression equations of shear wave velocities. Soils Found 32(1):205–214

    Google Scholar 

  • Mayne PW, Rix GJ (1995) Correlations between shear wave velocity and cone tip resistance in natural clays. Soils Found 35(2):107–110

    Google Scholar 

  • Mokhtar TA, Hermann RB, Russell DR (1988) Seismic velocity and Q model for the shallow structure of the Arabian shield from short-period Rayleigh waves. Geophysics 53(11):1379–1387

    Article  Google Scholar 

  • Ohsaki Y, Iwasaki R (1973) On dynamic shear moduli and Poisson’s ratio of soil deposits. Soil Found 13(4):61–73

    Google Scholar 

  • Ohta Y, Goto N (1978) Empirical shear wave velocity equations in terms of characteristics soil indexes. Earthq Eng Struct Dyn 6:167–187

    Article  Google Scholar 

  • Pitilakis K, Raptakis D, Lontzetidis K, Tika-Vassilikou T, Jongmans D (1999) Geotechnical and geophysical description of Euro-Seistests, using field and laboratory tests, and moderate strong ground motions. J Earthq Eng 3(3):381–409

    Article  Google Scholar 

  • Seed HB, Idriss IM (1981) Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes. ASCE Natl Conv, Missouri, pp 81–544

    Google Scholar 

  • Stokoe KH, Nazarian S, Rix GJ, Sanchez-Salinero I, Sheu J-C, Mok YJ (1988). In: Von Thun JL (ed) In situ seismic testing of hard-to-sample soils by surface wave method. Geotech. Special Pub., No. 20, ASCE, New York, pp 264–278

  • Sykora DE, Stokoe KH (1983) Correlations of in situ measurements in sands of shear wave velocity. Soil Dyn Earthq Eng 20(1–4):125–136

    Google Scholar 

  • Tsiambaos G (1991) Correlation of mineralogy and index properties with residual strength of Iraklion marls. Eng Geol 30:357–369

    Article  Google Scholar 

  • Uma Maheswari R, Boominathan A, Dodagoudar GR (2009) Use of surface waves in statistical correlations of shear wave velocity and penetration resistance of Chennai soils. Geotech. Geol Eng (doi:10.1007/s10706-009-9285-9)

Download references

Acknowledgments

Part of this work carried out under a research project sponsored by the Greek Earthquake Planning and Protection Organization (EPPO) and the authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tsiambaos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiambaos, G., Sabatakakis, N. Empirical estimation of shear wave velocity from in situ tests on soil formations in Greece. Bull Eng Geol Environ 70, 291–297 (2011). https://doi.org/10.1007/s10064-010-0324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-010-0324-9

Keywords

Mots clés

Navigation