Computerized spatial language generation for object location | Virtual Reality Skip to main content

Advertisement

Log in

Computerized spatial language generation for object location

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Spatial language is the syntax used for object or place locations. Because an object location is inherently relative, it implies a frame of reference, which in turn may be aided by a reference object, other than the one to be located. This reference object is commonly selected based on its perceptual salience, that is, its more prominent features. Computer systems linked to various research areas have been developed to facilitate the communication and/or interpretation of spatial language for localization tasks. In this paper is presented a literature review of computer systems that adopt spatial language and perceptual salience for object location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abella A, Kender JR (1999) From Images to Sentences via Spatial Relations. In: Proceedings of the W on Integration of Speech and Image Understanding, pp 117–146

  • André E, Bosch G, Herzog G, Rist T (1986) Characterizing trajectories of moving objects using natural language path descriptions. Project VITRA, Universität des Saarlandes, Brighton, pp 1–8

    Google Scholar 

  • André E, Bosch G, Herzog G, Rist T (1987) Coping with the intrinsic and deictic uses of spatial prepositions. Artificial intelligence II: methodology, systems, applications (AIMSA). North-Holland, Amsterdam, pp 375–382

    Google Scholar 

  • André E, Herzog G, Rist T (1988) On the simultaneous interpretation of real world image sequences and their natural language description: the system SOCCER. In: Proceeding of 8th European Conference on Artificial Intelligence (ECAI-88). Pitmann Publishing, London, Munich, pp 449–454

  • André E, Herzong G, Rist T (1989) Natural language access to visual data: dealing with space and movement. In: Proceedings of the 1st Workshop on Logical Semantics of Time, Space and Movement in Natural Language. Universität des Saarlandes, Toulouse, pp 1–21

  • Barclay M (2010) reference object choice in spatial language: machine and human models, University of Exeter. PhD. Thesis

  • Frintrop S, Rome E (2010) Computational visual attention systems and their cognitive foundations: a survey. ACM J Name 7:1–46

    Google Scholar 

  • Gapp K-P (1995) Object localization: selection of optimal reference objects. Universität des Saarlandes, Saarbrücken, pp 1–18

    Google Scholar 

  • Gapp K-P (1996) Selection of best reference objects in object localizations. University of Saarbrücken, Saarbrücken, pp 1–6

    Google Scholar 

  • Gorniak P, Roy D (2004) Grounded semantic composition for visual scenes. J Artif Intell Res 21:429–470

    Google Scholar 

  • Hall D, Leibe B, Schile B (2002) Saliency of interest points under scale changes. British Machine Vision Conference (BMVC’02), Cardiff, pp 646–655

  • Hayward WG, Tarr MJ (1995) Spatial language and spatial representation. Elsevier Cognit 55:39–84

    Article  Google Scholar 

  • Herzog G (1992) Visualization methods for the VITRA workbench. Universität des Saarlandes, Saarbrücken, pp 1–16

    Google Scholar 

  • Herzog G (1995) From visual input to verbal output in the visual translator. In: Proceedings of the AAAI Fall Symposium on Computational Models for Integrating Language and Vision. Universität des Saarlandes, Cambridge, pp 1–15

  • Huang L, Pashler H (2005) Quantifying object salience by equating distractor effects. Elsevier Vis Res 45:1909–1920

    Article  Google Scholar 

  • Kelleher JD (2003) A Perceptually Based Computational Framework for the Interpretation of Spatial Language Dublin City University. PhD. Thesis

  • Kelleher JD, Costello FJ (2009) Applying computational models of spatial prepositions to visually situated dialog. Comput Linguist Assoc Comput Linguist 35(2):271–306

    Google Scholar 

  • Lahera G, Freund N, Sáiz-Ruiz J (2013) Asignación de relevancia (salience) y desregulación del sistema dopaminérgico. Elsevier Doyma Revista de Psiquiatría y Salud Mental 6:45–51

    Article  Google Scholar 

  • Landau B, Jackendoff R (1993) “What” and “where” in spatial language and spatial cognition. Behav Brain Sci 16:255–265

    Article  Google Scholar 

  • Levinson SC (2003) Space in language and cognition: explorations in cognitive diversity, LCC5. Language, culture and cognition. University Press, Cambridge

    Book  Google Scholar 

  • Lockwood K, Forbus K, Usher J (2005) SpaceCase: A Model of Spatial Preposition Use. In: Proceedings of the 27th Annual Conference of the Cognitive Science Society, Stressa, Italy

  • Lockwood K, Forbus K, Halstead DT, Usher J (2006) Automatic categorization of spatial prepositions. In: Proceedings of the 28th Annual Conference of the Cognitive Science Society, Vancouver, Canada

  • Ma Y, Hu X, Wilson FA (2012) The egocentric spatial reference frame used in dorsal–lateral prefrontal workingmemory in primates. Elsevier Neurosci Biobehav Rev 36:26–33

    Article  Google Scholar 

  • McMullen PA, Jolicoeur P (1990) The spatial frame of reference in object naming and discrimination of left-right reflections. Psychon Soc Inc Mem Cognit 18:99–115

    Article  Google Scholar 

  • Moratz R, Tenbrik T (2006) Spatial reference in linguistic human-robot interaction: iterative, empirically supported development of a model of projective relations. Spat Cogn Comput 6(1):63–106

    Google Scholar 

  • Moratz R, Tenbrink T, Bateman J, Fischer K (2003) Spatial knowledge representation for human–robot interaction Springer-Verlag Berlin Heidelberg Spatial Cognition III Lecture Notes in Computer Science 2685:263–283

  • Mou W, McNamara TP (2002) Intrinsic frames of reference in spatial memory. Am Psychol Assoc J Exp Psychol: Learn Mem Cognit 28:162–170

    Google Scholar 

  • Mukerjee A, Gupta K, Nautiyal S, Singh MP, Mishra N (2000) Conceptual description of visual scenes from linguistic models. Elsevier Image Vis Comput 18:173–187

    Article  Google Scholar 

  • O’Meara C, Pérez BG (2011) Spatial frames of reference in Mesoamerican languages. Elsevier Lang Sci 33:837–852

    Article  Google Scholar 

  • Pederson E, Danziger E, Wilkins D, Levinson S, Kita S, Senft G (1998) Semantic typology and spatial conceptualization linguistic society of America JSTOR. Language 74:557–589

    Article  Google Scholar 

  • Pinker S, Bloom P (1990) Natural language and natural selection. Behav Brain Sci 13:707–727

    Article  Google Scholar 

  • Raubal M, Winter S (2002) Enriching Wayfinding Instructions with Local Landmarks. In: Egenhofer MJ, Mark DM (eds) Second International Conference, GIScience Proceedings. Springer Berlin Heidelberg, Boulder, CO, USA, pp 243–259

  • Regier T (1996) The human semantic potential: spatial language and constrained connectionism. Computat Linguist 23(3):483–486

    Google Scholar 

  • Regier T, Carlson LA (2001) Grounding spatial language in perception: an empirical and computational investigation. J Exp Psychol Gen 130:273–298

    Article  Google Scholar 

  • Rickheit G, Wachsmuth I (2006) Situated communication. Gruyter, Berlin, pp 7–30

    Book  Google Scholar 

  • Röser F, Krumnack A, Hamburger K (2013) The influence of perceptual and structural salience. In: Markus K, Natalie S, Michael P, Ipke W (eds) Cooperative Minds: Social Interaction and Group Dynamics Proceedings of the 35th Annual Meeting of the Cognitive Science Society, Austin, TX. USA, pp 3315–3320

  • Roy DK (2002) Learning visually-grounded words and syntax for a scene description task. Comput Speech Lang 16:1–39

    Article  Google Scholar 

  • Shelton AL, McNamara TP (2001) Systems of spatial reference in human memory. Elsevier Sci Cognit Psychol 43:274–310

    Article  Google Scholar 

  • Skubic M, Perzanowski D, Blisard S, Schultz A, Adams W (2002) Spatial Language for Human-Robot Dialogs. IEEE Transactions on SMC, Part C, Special Issue on Human-Robot Interaction: 1–39

  • Spotorno S, Tatler BW, Faure S (2013) Semantic consistency versus perceptual salience in visual scenes: findings from change detection. Elsevier Acta Psycol 142:168–176

    Article  Google Scholar 

  • Stoia L (2007) Noun phrase generation for situated dialogs, Ohio State University. PhD. Thesis

  • Tenbrink T, Ragni M (2012) Relevance in Spatial Navigation and Communication. Springer Spatial Cognition VIII Lecture Notes in Computer Science 7463:279–298

  • Titchener EB (1908) Lectures on the elementary psychology of feeling and attention. The MacMillan Company, New York

    Book  Google Scholar 

  • Trinh T-H (2013) A Constraint-based Approach to Modelling Spatial Semantics of Virtual Environments, Université de Bretagne Occidentale. PhD. Thesis

  • Vargas ML, Lahera G (2011) Asignación de relavancia: Una propuesta para el término inglés “salience”. Actas Esp Psiquiatría, España, pp 271–272

    Google Scholar 

  • Williams P, Miikkulainen R (2006) Grounding Language in Descriptions of Scenes. In: Proceedings of the 28th Annual Conference of the Cognitive Science Society

  • Winograd T (1971) Procedures as a representation for data in a computer program for understanding natural language, Massachusetts Institute of Technology. PhD. Thesis

  • Wraga M, Creem SH, Proffitt DR (1998) The influence of spatial reference frames on imagined object and viewer rotations. Elsevier Acta Psychol 102:247–264

    Article  Google Scholar 

Download references

Acknowledgments

Graciela Lara holds a PROMEP scholarship in partnership with the Universidad de Guadalajara (UDG-685), Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Lara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, G., De Antonio, A. & Peña, A. Computerized spatial language generation for object location. Virtual Reality 20, 183–192 (2016). https://doi.org/10.1007/s10055-016-0289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-016-0289-5

Keywords

Navigation