Multisensory VR interaction for protein-docking in the CoRSAIRe project | Virtual Reality Skip to main content
Log in

Multisensory VR interaction for protein-docking in the CoRSAIRe project

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Proteins take on their function in the cell by interacting with other proteins or biomolecular complexes. To study this process, computational methods, collectively named protein docking, are used to predict the position and orientation of a protein ligand when it is bound to a protein receptor or enzyme, taking into account chemical or physical criteria. This process is intensively studied to discover new biological functions for proteins and to better understand how these macromolecules take on these functions at the molecular scale. Pharmaceutical research also employs docking techniques for a variety of purposes, most notably in the virtual screening of large databases of available chemicals to select likely molecular candidates for drug design. The basic hypothesis of our work is that Virtual Reality (VR) and multimodal interaction can increase efficiency in reaching and analysing docking solutions, in addition to fully a computational docking approach. To this end, we conducted an ergonomic analysis of the protein–protein current docking task as it is carried out today. Using these results, we designed an immersive and multimodal application where VR devices, such as the three-dimensional mouse and haptic devices, are used to interactively manipulate two proteins to explore possible docking solutions. During this exploration, visual, audio, and haptic feedbacks are combined to render and evaluate chemical or physical properties of the current docking configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Acronym of Window, Icon, Menu, and Pointing device.

  2. Adaptative Poisson-Boltzmann Solver (Baker et al. 2001).

  3. SLERP is shorthand for spherical linear interpolation used with quaternion representation of 3D rotation.

References

  • Anastassova M, Mégard C, Burkhardt JM (2007) Prototype evaluation and user-needs analysis in the early design of emerging technologies. In: Procedings of the 12th international conference on human-computer interaction (HCI’07)

  • Anderson A, Weng Z (1999) VRDD: applying virtual reality visualization to protein docking and design. J Mol Graphi Model 17(3):180–186

    Article  Google Scholar 

  • André E (2000) The generation of multimedia presentations. In: Handbook of natural language processing, pp 305–327

  • Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69(1):139–59

    Article  Google Scholar 

  • Annett J (2003) Hierarchical task analysis. In: Handbook of cognitive task design, pp. 17–35

  • Arboun A (2007) Evaluation des métaphores de sonification. Master thesis, Ecole Nationale Supérieure Louis Lumière, Paris, France

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98: 10037–10041

    Google Scholar 

  • Barass S, Zehner B (2000) Responsive sonification of well-logs. In: Proceedings of the international conference on auditory display (ICAD’00)

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) The protein data bank. Nucleic Acids Res 1(28):235–242

    Article  Google Scholar 

  • Borrelli KW, Vitalis A, Raul Alcantara R, Guallar V (2005) PELE: protein energy landscape exploration. A novel Monte Carlo based technique. J Chem Theory Comput 6(1):1304–1311

    Article  Google Scholar 

  • Bourdot P, Touraine D (2002) Polyvalent display framework to control virtual navigations by 6DoF tracking. In: Proceedings of the IEEE virtual reality international conference (IEEE-VR’02)

  • Bouyer G (2007) Rendu multimodal en Réalité Virtuelle: Supervision des interactions au service de la tâche. Ph.d. thesis, Université Paris XI, France

  • Bouyer G, Bourdot P (2008) Supervision of 3D multimodal rendering for protein-protein virtual docking. In: Proceedings of the 13th Eurographics symposium on virtual environments (EGVE’08), pp 49–56

  • Brooks FP Jr, Ouh-Young M , Batter JJ, Jerome Kilpatrick P (1990) Project GROPE: Haptic displays for scientific visualization. In: Proceedings of the 17th conference on computer graphics and interactive techniques, pp 177–185

  • Comeau SR, Gatchell WD, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1):45–50

    Article  Google Scholar 

  • Connolly ML (1983a) Analytical molecular surface calculation. J Appl Crystallogr 16:548–558

    Article  Google Scholar 

  • Connolly ML (1983b) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713

    Article  Google Scholar 

  • Corey RB, Pauling L (1953) Molecular models of amino acids, peptides, and proteins. Rev Sci Instrum 24(8):621–627

    Article  Google Scholar 

  • Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The CAVE: audio visual experience automatic virtual environment. ACM SIGGRAPH Comput Graph 35(6):64–72

    Google Scholar 

  • Dominjon L, Lécuyer A, Burkhardt JM, Andrade-Barroso G, Richir S (2005) The “Bubble” technique: interacting with large virtual environments using haptic devices with limited workspace. In: Proceedings of the world haptics conference (joint Eurohaptics conference and haptics symposium)

  • Dominjon L, Lécuyer A, Burkhardt JM, Richir S (2006) Haptic hybrid rotations: overcoming hardware rotational limitations of force-feedback devices. In: Proceedings of the IEEE international conference on virtual reality (IEEE-VR’05)

  • Ferey N, Delande O, Grasseau G, Baaden M (2008) A VR framework for interacting with molecular simulations. In: Proceedings of the international conference on virtual reality sofware and technologies (ACM-VRST’08)

  • Fernandez-Recio J, Totrov M, Abagyan R (2003) ICM-DISCO docking by global energy optimization with fully flexible Side-Chains, vol 1, issue 52. Bradford Books/MIT Press, Cambridge, MA, pp 113–117

  • Garcia-Ruiz MA, Guttierez-Pulido JR (2006) An overview of auditory display to assist comprehension of molecular information. Interact Comput 18(4):853–868

    Article  Google Scholar 

  • Ghiglione R, Landré A, Bromberg M, Molette P (1998) L’analyse automatique des contenus

  • Gottschalk S, Lin MC, Manocha D (1996) OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd conference on computer graphics and interactive techniques, vol 30, pp 171–180

  • Grosdidier A (2007) Conception d’un logiciel de docking et applications dans la recherche de nouvelles molécules actives. PhD thesis, Université Joseph Fourier Grenoble 1, France

  • Hart TN, Read RJ (2004) A multiple-start Monte Carlo docking method. Proteins Struct Funct Genet 13(3):206–222

    Google Scholar 

  • Hermann T, Ritter H (1999) Listen to your Data: model-based sonification for data analysis, pp 189–194

  • Hess B, Kutzner D, Vanderspoel C, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  Google Scholar 

  • Hinsen K (2000) The molecular modeling toolkit: a new approach to molecular simulation. J Comput Chem 21:79–85

    Article  Google Scholar 

  • Johnson DE, Willemsen P (2003) Six Degree-of-Freedom Haptic rendering of complex polygonal models. In: Proceedings of the 11th symposium on haptic interfaces for virtual environment and teleoperator systems (HAPTICS’03)

  • Katz FGB, Rio E, Picinali L, Warusfel O (2008) The effect of spatialization in a data sonification exploration tasks. In: Proceedings of the international conference on auditory display (ICAD’08)

  • Kitagawa M, Dokko D, Okamura A, Yuh D (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129(1):151–158

    Article  Google Scholar 

  • Levine D, Facello M, Hallstrom P, Reeder G, Walenz B, Stevens F (1997) Stalk: an interactive system for virtual molecular docking. Proc IEEE Conf Comput Sci Eng 4(2):55–65

    Article  Google Scholar 

  • Lu T-C, Ding JH, Crivelli SN (2005) DockingShop: a tool for interactive protein docking. In: Procedings of the computational systems bioinformatics conference, pp 271–272

  • Lundin KE, Sillen M, Cooper MD, Ynnerman A (2005) Haptic visualization of computational fluid dynamics data using reactive forces. In: Procedings of the society of photo-optical instrumentation engineer conference (SPIE’05), visualization and data analysis, vol 5669, pp 31–41

  • Maciejewski R, Choi S, Ebert DS, Tan HZ (2005) Multi-Modal perceptualization of volumetric data and its application to molecular docking. In: Proceedings of the first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems.

  • Magnani L (2005) An abductive theory of scientific reasoning. Semiotica 153(1–4):261–286

    Article  MathSciNet  Google Scholar 

  • Moore BCJ (2003) An introduction to the psychology of hearing

  • Pipe SW (2008) Recombinant clotting factors. Thromb Haemost 99(5):840–850

    Google Scholar 

  • Ray N, Cavin X, Paul JC, Maigret B (2005) Intersurf: dynamic interface between proteins. J Mol Graph Model 23(4):347–354

    Article  Google Scholar 

  • Richard P, Chamaret D, Inglese F-X, Lucidarme P, Ferrier J-L (2006) Human-scale haptic virtual environment for product design: effect of sensory substitution. Int J Virtual Real 5(2):37–44

    Google Scholar 

  • Ritchie DW (2003) Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins 52(1):98–106

    Article  Google Scholar 

  • Rossi R, Isorce M, Morin S, Flocard J, Arumugam K, Crouzy S, Vivaudou M, Redon S (2007) Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design. Bioinformatics 23(13):408–417

    Article  Google Scholar 

  • Rosson MB, Carroll JM (2002) Scenario-based design. In: Jacko JA, Sears A (eds) The human-computer interaction handbook fundamentals, evolving technologies and emerging applications, pp 1032–1050

  • Sanner M, Olson A, Spehner J-C (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320

    Article  Google Scholar 

  • Seeger A, Chen J (1997) Controlling force feedback over a network. In: Proceedings of the second PHANToM user’s group workshop

  • Touraine D, Bourdot P, Bellik Y, Bolot L (2002) A framework to manage multimodal fusion of events for advanced interactions within virtual environments. In: Proceedings of the 8th EUROGRAPHICS workshop on virtual environment, (EGVE’2002)

  • Turk M, Robertson G (2000) Perceptual user interfaces (introduction). Commun ACM 43(3):32–34

    Article  Google Scholar 

  • Villoutreix BO, Bastard K, Sperandio O, Fahraeus R, Poyet JL, Calvo F, Deprez B, Miteva MA (2008) In silico-in vitro screening of protein-protein interactions: towards the next generation of therapeutics. Curr Pharm Biotechnol 9(2):103–22

    Article  Google Scholar 

  • Walker BN, Lane DM (1994) Auditory display: sonification, audification, and auditory interfaces. Westview Press, Boulder, CO, USA

  • Walker BN, Lane DM (2008) Sonification mappings database on the web. In: Proceedings of the international conference on auditory display (ICAD’01)

  • Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303

    Article  Google Scholar 

  • Wriggers W, Birmanns S (2003) Interactive fitting augmented by force-feedback and virtual reality. J Cell Biol 144:123–131

    Google Scholar 

  • Zacharias M (2005) ATTRACT: protein-protein docking in CAPRI using a reduced protein model. Proteins 60(2):252–6

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is currently supported by the ANR (the French National Agency for Research) through the CoRSAIRe project of ARA MDMSA program, and by the RTRA (french Thematic Network of Advanced Research) DIGITEO labs, through the SIMCoD project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Férey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Férey, N., Nelson, J., Martin, C. et al. Multisensory VR interaction for protein-docking in the CoRSAIRe project. Virtual Reality 13, 273–293 (2009). https://doi.org/10.1007/s10055-009-0136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-009-0136-z

Keywords

Navigation