A stochastic framework for K-SVD with applications on face recognition | Pattern Analysis and Applications Skip to main content
Log in

A stochastic framework for K-SVD with applications on face recognition

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In recent years, the sparse representation modeling of signals has received a lot of attention due to its state-of-the-art performance in different computer vision tasks. One important factor to its success is the ability to promote representations that are well adapted to the data. This is achieved by the use of dictionary learning algorithms. The most well known of these algorithms is K-SVD. In this paper, we propose a stochastic framework for K-SVD called \(\alpha\)K-SVD. The \(\alpha\)K-SVD uses a parameter \(\alpha\) to control a compromise between exploring the space of dictionaries and improving a possible solution. The use of this heuristic search strategy was motivated by the fact that K-SVD uses a greedy search algorithm with fast convergence, possibly leading to local minimum. Our approach is evaluated on two public face recognition databases. The results show that our approach yields better results than K-SVD and LC-KSVD (a K-SVD adaptation to classification) when the sparsity level is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.cs.technion.ac.il/~ronrubin/software.html.

  2. http://www.umiacs.umd.edu/~zhuolin/projectlcksvd.html.

References

  1. Aharon M, Elad M, Bruckstein A (2005) K-SVD: Design of dictionaries for sparse representation. In: Proceedings of SPARS05, pp 9–12

  2. Cai P, Wang G, Zhang H (2014) K-SVD with reference: an initialization method for dictionary learning. Neural computing and applications, pp 1–12. doi:10.1007/s00521-014-1607-z

  3. Davenport MA, Wakin MB (2010) Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans Inf Theory 56(9):4395–4401

    Article  MathSciNet  Google Scholar 

  4. Elad M (2010) Sparse and redundant representations: from theory to applications in signal and image processing, 1st edn. Springer, Heidelberg

    Book  MATH  Google Scholar 

  5. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745. doi:10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  6. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  7. Golts A, Elad M (2015) Linearized kernel dictionary learning. CoRR. arXiv:1509.05634

  8. Huang K, Aviyente S (2006) Sparse representation for signal classification. In: Advances in Neural Information Processing Systems (NIPS 2006). MIT Press, pp 609–616

  9. Jiang Z, Lin Z, Davis L (2011) Learning a discriminative dictionary for sparse coding via label consistent k-svd. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1697–1704. doi:10.1109/CVPR.2011.5995354

  10. Jiang Z, Lin Z, Davis LS (2013) Label consistent k-svd: Learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35(11):2651–2664

    Article  Google Scholar 

  11. Jin W, Wang L, Zeng X, Liu Z, Fu R (2014) Classification of clouds in satellite imagery using over-complete dictionary via sparse representation. Pattern Recognit Lett 49:193–200. doi:10.1016/j.patrec.2014.07.015

    Article  Google Scholar 

  12. Kuang Y, Zhang L, Yi Z (2014) An adaptive rank-sparsity k-svd algorithm for image sequence denoising. Pattern Recognit Lett 45:46–54. doi:10.1016/j.patrec.2014.03.003

    Article  Google Scholar 

  13. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2008) Discriminative learned dictionaries for local image analysis. In: CVPR

  14. Martinez AM, Benavente R (1998) The AR Face Database. Tech. rep, CVC

  15. Natarajan BK (1995) Sparse approximate solutions to linear systems. SIAM J Comput 24(2):227–234

    Article  MathSciNet  MATH  Google Scholar 

  16. Oja E, Hyvrinen A, Hoyer P (1999) Image feature extraction and denoising by sparse coding. Pattern Anal Appl 2(2):104–110. doi:10.1007/s100440050021

    Article  Google Scholar 

  17. Pati YC, Rezaiifar R, Krishnaprasad P (1993) Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: 1993 IEEE Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp 40–44

  18. Ptucha R, Savakis A (2014) Lge-ksvd: Robust sparse representation classification. IEEE Trans Image Process 23(4):1737–1750. doi:10.1109/TIP.2014.2303648

    Article  MathSciNet  Google Scholar 

  19. Rubinstein R, Zibulevsky M, Elad M (2008) Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit. Tech. rep

  20. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227. doi:10.1109/TPAMI.2008.79

    Article  Google Scholar 

  21. Zhang Q, Li B (2010) Discriminative K-SVD for dictionary learning in face recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2691–2698. doi:10.1109/CVPR.2010.5539989

Download references

Acknowledgments

The authors acknowledge the support of CNPq (Grant 456837/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Pordeus Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkomes, G., de Brito, C.E.F. & Gomes, J.P.P. A stochastic framework for K-SVD with applications on face recognition. Pattern Anal Applic 20, 845–854 (2017). https://doi.org/10.1007/s10044-016-0541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-016-0541-3

Keywords

Navigation