Hyperplane arrangements for the fast matching and classification of visual landmarks | Pattern Analysis and Applications
Skip to main content

Hyperplane arrangements for the fast matching and classification of visual landmarks

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Many robotics and mechatronics systems rely on a fast analysis of visual landmarks. Recently, binary feature representations of the popular SIFT and SURF landmarks have been proposed that offer large speed improvements and low memory consumption at high accuracy. In this paper, we compare a binarisation based on median-centred hyperplanes to the dominating approach of random hyperplanes. We describe the algorithms in a joint taxonomy and show that the kernel for median-centred hyperplanes satiesfies Mercer’s condition. Speed and accuracy are benchmarked in a registration and classification task. Both methods achieve the same dramatic speedup in kernel evaluation. But we show that median-centred hyperplanes are faster in binarisation, find better matches and generalise better over pose and individual variation in the classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

References

  1. André B, Vercauteren T, Buchner AM, Wallace MB, Ayache N (2011) Retrieval evaluation and distance learning from perceived similarity between endomicroscopy videos. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), LNCS. Springer, Heidelberg

  2. Anvaripour M, Ebrahimnezhad H (2013) Accurate object detection using local shape descriptors. Pattern Anal Appl

  3. Bay H, Ess A, Tuytelaars T, van Gool L (2006) SURF: speeded up robust features. Computer Vision Image Underst (CVIU) 110(3):346–359

    Article  Google Scholar 

  4. Chandrasekhar V, Takacs G, Chen DM, Tsai SS, Singh JP, Girod B (2009) Transform coding of image feature descriptors. In: visual Communication and Image Processing (VCIP)

  5. Chen H, Sun D, Yang J (2009) Global localization of multirobot formations using ceiling vision SLAM strategy. Mechatronics 19(5):617–628

    Article  Google Scholar 

  6. Choras M, Kozik R (2013) Contactless palmprint and knuckle biometrics for mobile devices. Pattern Anal Appl 15:73–85

    Article  MathSciNet  Google Scholar 

  7. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  8. Dani A, Fischer N, Kan Z, Dixon W (2012) Globally exponentially stable observer for vision-based range estimation. Mechatronics 22(4):381–389

    Article  Google Scholar 

  9. Diephuis M, Voloshynovskiy S, Koval O, Beekhof F (2011) Statistical Analysis of Binarized SIFT Descriptors. In: International Symposium on Image and Signal Processing and Analysis (ISPA)

  10. Dong Y, Gao S, Tao K, Liu J, Wang H (2013) Performance evaluation of early and late fusion methods for generic semantics indexing. Pattern Anal Appl

  11. Donoho DL, Tanner J (2010) Counting the faces of randomly-projected hypercubes and orthants, with applications. Discrete Comput Geom 43:522–541

    Article  MathSciNet  MATH  Google Scholar 

  12. Edelkamp S, Stommel M (2012) The bitvector machine: a fast and robust machine learning algorithm for non-linear problems. In: Flach PA, Bie TD, Cristianini N (eds) European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), pp 175–190. Springer .

  13. Gong Y, Lazebnik S (2011) Iterative quantization: a procrustean approach to learning binary codes. In: Computer Vision and Pattern Recognition (CVPR)

  14. Hsu CW, Lin CJ (2002) A comparison of methods for multi-class support vector machines. IEEE Trans Neural Networks 13:415–425

    Article  Google Scholar 

  15. Jain V, Learned-Miller E (2010) Fddb: A benchmark for face detection in unconstrained settings. Tech Rep UM-CS-2010-009, University of Massachusetts, Amherst

  16. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object recognition? In: International Conference on Computer Vision (ICCV)

  17. Ke Y, Sukthankar R (2004) PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. Computer Vision and Pattern Recognition (CVPR) 2:506–513

    Google Scholar 

  18. Kuo YH, Lin HT, Cheng WH, Yang YH, Hsu WH (2011) Unsupervised auxiliary visual words discovery for large-scale image object retrieval. In: IEEE Comp Vision Pattern Recognit (CVPR)

  19. Lee IH, Chai TS (2013) Accurate registration using adaptive block processing for multi-spectral images. Circuits Syst Video Technol, IEEE Trans on PP(99), 1–1

  20. Lowe DG (1999) Object recognition from local scale-invariant features. In: International Converence on Computer Vision (ICCV), pp 1150–1157

  21. Lyu S (2005) Mercer kernels for object recognition with local features. Comp Vision Pattern Recognit (CVPR) 2:223–229

    Google Scholar 

  22. Makar M, Chang CL, Chen D, Tsai SS, Girod B (2009) Compression of image patches for local feature extraction. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) pp. 821–824. DOI http://doi.ieeecomputersociety.org/10.1109/ICASSP.2009.4959710

  23. Mikolajczyk K, Leibe B, Schiele B (2005) Local features for object class recognition. In: International Conference on Computer Vision (ICCV’05)

  24. Mikolajczyk K, Leibe B, Schiele B (2006) Multiple object class detection with a generative model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’06)

  25. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans. Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  26. Minh HQ, Niyogi P, Yao Y (2006) Mercer’s theorem, feature maps, and smoothing. In: The 19th Annual Conference on Learning Theory (COLT), pp 154–168

  27. Mühling M, Ewerth R, Freisleben B (2011) On the spatial extents of SIFT descriptors for visual concept detection. In: International Conference on Computer Vision Systems (ICVS), pp 71–80. Springer, Berlin, Heidelberg

  28. Opelt A, Fussenegger M, Pinz A, Auer P (2004) Weak hypotheses and boosting for generic object detection and recognition. In: European Conference on Computer Vision (ECCV), pp 71–84

  29. Pavani SK, Delgado-Gomez D, Frangi AF (2012) Gaussian weak classifiers based on co-occurring haar-like features for face detection. Pattern Analy Appl

  30. Phillips PJ, Rauss PJ, Der SZ (1996) FERET (Face Recognition Technology) recognition algorithm development and test results. Tech Rep 995, Army Research Lab

  31. Rifkin R, Klautau A (2004) In defence of one-vs-all classification. J Mach Learn Res 5:101–141

    MathSciNet  MATH  Google Scholar 

  32. Roy S, Sun Q (2007) Robust hash for detecting and localizing image tampering. In: Proc. IEEE Int. Conf. on Image Processing, pp 117–120. San Antonio, TX

  33. Savicky P, Robnik-Sikonja M (2008) Learning random numbers: a MATLAB anomaly. Appl Artif Intell 22(3):254–265

    Article  Google Scholar 

  34. Sleumer NH (2000) Hyperplane arrangements. construction, visualization and application. Ph.D. thesis, Technische Wissenschaften ETH Zürich, Nr. 13502

  35. Stanley RP (2007) An introduction to hyperplane arrangements, IAS/Park City Math. Ser., vol. 13, pp 389–496. Amer Math Soc

  36. Stommel M, Herzog O (2009) Binarising SIFT-descriptors to reduce the curse of dimensionality in histogram-based object recognition. In: Slezak D, Pal SK, Kang BH, Gu J, Kurada H, Kim TH (eds) Signal Processing, Image Processing and Pattern Recognition, pp 320–327. Springer

  37. Stommel M, Langer M, Herzog O, Kuhnert KD (2011) A fast, robust and low bit-rate representation for SIFT and SURF features. In: Proc. IEEE International Symposium on Safety, Security, and Rescue Robotics, pp 278n++-283

  38. Strecha C, Bronstein AM, Bronstein MM, Fua P (2010) LDAHash: Improved matching with smaller descriptors. In: EPFL-REPORT-152487

  39. Su Y, Jurie F (2011) Visual word disambiguation by semantic contexts. In: International Conference on Computer Vision (ICCV)

  40. Vapnik VN, Chervonenkis AY (1974) Theory of pattern recognition [in Russian]. Nauka, USSR

    MATH  Google Scholar 

  41. Viola P, Jones MJ (2004) Robust real-time face detection. Intern J Comp Vision 57(2):137–154

    Article  Google Scholar 

  42. Wiedemeyer T, Stommel M, Herzog O (2011) Wide range face pose estimation by modelling the 3D arrangement of robustly detectable sub-parts. In: Intl. Conf. on Computer Analysis of Images and Patterns (CAIP), pp 237–244. Springer

  43. Winder SAJ, Brown M (2007) Learning Local Image Descriptors. In: IEEE Computer Vision and Pattern Recognition (CVPR)

  44. Yang L, Jin R, Sukthankar R, Jurie F (2008) Unifying discriminative visual codebook generation with classifier training for object category recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  45. Yeo C, Ahammad P, Ramchandran K (2008) Rate-efficient visual correspondences using random projections. In: IEEE International Conference on Image Processing, pp 217–220. San Diego, CA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stommel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stommel, M., Herzog, O. & Xu, W. Hyperplane arrangements for the fast matching and classification of visual landmarks. Pattern Anal Applic 19, 621–629 (2016). https://doi.org/10.1007/s10044-014-0417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-014-0417-3

Keywords