Abstract
In this article, we discuss the discriminative power of a set of image features, extracted from detail subbands of the Gabor wavelet transform and the dual-tree complex wavelet transform for the purpose of computer-assisted zoom-endoscopy image classification. We incorporate color channel information into the classification process and show that this leads to superior classification results, compared to luminance-channel-only-based image analysis.



Similar content being viewed by others
Notes
the process of removing polyps.
References
Fukunaga K (1990) Introduction to statistical pattern recognition. Morgan Kaufmann, Menlo Park
Häfner M, Brunauer L, Payer H, Resch R, Wrba F, Gangl A, Vécsei A, Uhl A (2007) Pit pattern classification of zoom-endoscopic colon images using DCT and FFT. In: Kokol P, Podgorelec V, Micetic-Turk D, Zorman M, Verlic M (eds) Proceedings of the 20th IEEE International Symposium on Computer-Based Medical Systems (CBMS 2007), Maribor, June 2007. IEEE Computer Society CPS, New York, pp 159–164
Häfner M, Brunauer L, Payer H, Resch R, Wrba F, Gangl A, Vécsei A, Uhl A (2007) Pit pattern classification of zoom-endoscopical colon images using evolved Fourier feature vectors. In: Diamantaras K, Adali T, Pitas I, Larsen J, Papadimitriou T, Douglas S (eds) Proceedings of the 2007 IEEE Machine Learning for Signal Processing Workshop (MLSP’07), Thessaloniki, August 2007. IEEE, New York, pp 99–104
Häfner M, Kendlbacher C, Mann W, Taferl W, Wrba F, Gangl A, Vecsei A, Uhl A (2006) Pit pattern classification of zoom-endoscopic colon images using histogram techniques. In: Proceedings of the 7th Nordic Signal Processing Symposium (NORSIG’06), pp 58–61, Reykjavik
Häfner M, Liedlgruber M, Wrba F, Gangl A, Vecsei A, Uhl A (2006) Pit pattern classification of zoom-endoscopic colon images using wavelet texture features. In: Proceedings of the 3rd International Conference on Advances in Medical Signal and Image Processing (MEDSIP’06), Glasgow
Haralick RM (1973) Textural features for image classification. IEEE Trans Syst Men Cybern 3(6):610–621
Hatipoglu S, Mitra N, Kingsbury S (1999) Texture classification using dual-tree complex wavelet transform. In: Proceedings of the 7th International Conference on Image Processing and Its Applications, pp 344–347, Brisbane
Hurlstone DP (2002) High-resolution magnification chromoendoscopy: common problems encountered in pit-pattern interpretation and correct classification of flat colorectal lesions. Am J Gastroenterol 97(4):1069–1070
Karkanis SA, Iakovids DK, Maroulis DE (2003) Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Trans Inform Technol Biomed 7(3):141–152
Kingsbury N (1998) The dual-tree complex wavelet transform: a new technique for shift-invariance and directional filters. In: Proceedings of the 8th IEEE DSP Workshop, pp 9–12, Bryce Canyon, Utah
Kingsbury N (2001) Complex wavelets for shift-invariant analysis and filtering of signals. J Appl Comput Harmonic Anal 10(3):234–253
Kittler J, Hatef M, Duin RPW, and Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239
Kudo S (1994) Colorectal tumours and pit pattern. J Clin Pathol 47:880–885
Kudo S, Tamura S, Nakajima T, Yamano H, Kusaka H, Watanabe H (1996) Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointest Endosc 44(1):8–14
Kwitt R, Uhl A (2007) Modeling the marginal distributions of complex wavelet coefficient magnitudes for the classification of zoom-endoscopy images. In: Proceedings of the IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA’07), Rio de Janeiro
Manjunath BS and Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842
Meining A (2004) Inter- and intra-observer variability of magnification chromoendoscopy for detecting specialized intestinal metaplasia at the gastroesophageal junction. Endoscopy 36(2):160–164
Palm C (2004) Color texture classification by integrative cooccurrence matrices. Pattern Recognit 37(5):965–976
Saito N, Coifman R (1994) Local discriminant bases. Math Imaging Wavelet Appl Signal Image Process II 2303:2–14
Selesnick I, Baraniuk R, and Kingsbury N (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22(6):123–151
Van de Wouwer G, Livens S, Scheunders P, Van Dyck D (1997) Color texture classification by wavelet energy correlation signatures. In: Proceedings of the 9th International Conference on Image Analysis and Processing (ICIAP’97). Springer, Berlin, pp 327–334
Zuiderveld K (2004) Contrast limited adaptive histogram equalization, Chap. VIII.5, pp 474–485. Graphics GEMS IV. Morgan Kaufmann, Menlo Park
Acknowledgments
This work is funded by the Austrian Science Fund (FWF) under Project No. L366-N15.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Häfner, M., Kwitt, R., Uhl, A. et al. Feature extraction from multi-directional multi-resolution image transformations for the classification of zoom-endoscopy images. Pattern Anal Applic 12, 407–413 (2009). https://doi.org/10.1007/s10044-008-0136-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10044-008-0136-8