Abstract
Exploitation of groundwater has greatly increased since the 1970s to meet the increased water demand due to fast economic development in China. Correspondingly, the regional groundwater level has declined substantially in many areas of China. Water sources are scarce in northern and northwestern China, and the anthropogenic pollution of groundwater has worsened the situation. Groundwater containing high concentrations of geogenic arsenic, fluoride, iodine, and salinity is widely distributed across China, which has negatively affected safe supply of water for drinking and other purposes. In addition to anthropogenic contamination, the interactions between surface water and groundwater, including seawater intrusion, have caused deterioration of groundwater quality. The ecosystem and geo-environment have been severely affected by the depletion of groundwater resources. Land subsidence due to excessive groundwater withdrawal has been observed in more than 50 cities in China, with a maximum accumulated subsidence of 2–3 m. Groundwater-dependent ecosystems are being degraded due to changes in the water table or poor groundwater quality. This paper reviews these changes in China, which have occurred under the impact of rapid economic development. The effects of economic growth on groundwater systems should be monitored, understood and predicted to better protect and manage groundwater resources for the future.
Résumé
L’exploitation des eaux souterraines a fortement augmenté depuis les années 1970 pour satisfaire la demande croissante en eau à cause du développement économique rapide en Chine. En conséquence, le niveau régional des eaux souterraines a considérablement diminué dans de nombreuses régions de Chine. Les sources d’eau sont rares dans le nord et nord-ouest de la Chine, et la pollution d’origine humaine des eaux souterraines a de plus aggravé la situation. Des eaux souterraines avec des concentrations élevées en contaminants géogéniques tels que l’arsenic, le fluore, l’iode et la salinité sont largement répandues en Chine, ce qui a eu des répercussions négatives sur l’approvisionnement en eau potable et à d’autres fins. En plus des contaminations anthropiques, les interactions entre les eaux de surface et les eaux souterraines, y compris les intrusions d’eau marine, ont causé la dégradation de la qualité des eaux souterraines. Les écosystèmes et les environnements géologiques ont été sévèrement affectés par la diminution des ressources en eaux souterraines. L’affaissement des terrains résultant des prélèvements excessifs des eaux souterraines est. observé dans plus de 50 villes en Chine, avec un maximum de subsidence cumulé de 2 à 3 m. Les écosystèmes dépendant des eaux souterraines sont en train d’être dégradés à cause des modifications des niveaux d’eau souterraine ou d’une faible qualité des eaux souterraines. Cet article passe en revue ces modifications qui prennent place en Chine, résultant de l’impact du rapide développement économique. Les effets de la croissance économique sur les systèmes hydrogéologiques devraient être surveillés, compris et prévus afin d’assurer une meilleure protection et gestion des ressources en eaux souterraines pour le futur.
Resumen
En China la explotación del agua subterránea ha aumentado considerablemente desde la década de 1970 para satisfacer la mayor demanda de agua debido al rápido desarrollo económico. En consecuencia, el nivel regional del agua subterránea se ha profundizado sustancialmente en muchas áreas de China. Las fuentes de agua son escasas en el norte y el noroeste de China, y la contaminación antropogénica del agua subterránea ha empeorado la situación. El agua subterránea que contiene altas concentraciones de arsénico, fluoruro, yodo y salinidad geogénica está ampliamente distribuida, lo cual afectó negativamente el suministro seguro de agua para beber y para otros fines. Además de la contaminación antropogénica, las interacciones entre las aguas superficiales y subterráneas, incluida la intrusión de agua de mar, han causado el deterioro de la calidad del agua subterránea. El ecosistema y el ambiente ecológico se han visto gravemente afectados por el agotamiento de los recursos de agua subterránea. La subsidencia del terreno debido a la extracción excesiva de agua subterránea se ha observado en más de 50 ciudades en China, con un hundimiento máximo acumulado de 2–3 m. Los ecosistemas dependientes del agua subterránea se están degradando debido a los cambios en el nivel freático o la mala calidad del agua subterránea. Este documento revisa estos cambios en China, que se han producido bajo el impacto del rápido desarrollo económico. Los efectos del crecimiento económico en los sistemas de agua subterránea deben ser monitoreados, comprendidos y pronosticados para proteger y gestionar mejor los recursos de agua subterránea en el futuro.
摘要
20世纪70年代以来地下水的开采大大增加以满足中国经济发展中日益增长的用水需求。因此,在中国许多地区区域地下水位大幅下降。中国北部和西北部水源短缺,人为因素造成的地下水污染使局势进一步恶化。含地球成因的浓度很高的砷、氟化物、碘化物及盐分的地下水广泛分布全国,影响着饮用和其它用途的安全供水。除了人为因素的污染,地表水和地下水的相互作用,包括海水入侵导致地下水水质恶化。地下水资源的枯竭严重影响生态系统和地质环境。在中国50多个城市都发现了地下水过度开采引起的地面沉降,累积最大沉降量2–3 m。由于水位变化或者地下水水质较差,致使依赖于地下水的生态系统正在退化。本文论述了在经济快速发展影响下中国的这些变化。应当监测、了解和预测经济增长对地下水系统的影响以便更好地将来保护和管理地下水资源。
Resumo
A explotação de águas subterrâneas tem tido grande crescimento desde os anos 70 para suprir o aumento de demanda, causada pelo rápido desenvolvimento econômico na China. Consequentemente, o nível regional de águas subterrâneas diminuiu substancialmente em muitas áreas da China. As fontes de água são escassas no norte e no noroeste da China, e a poluição antrópica das águas subterrâneas piorou essa situação. Águas subterrâneas com altas concentrações de arsênico, flúor, iodo e salinidade geogênicos são amplamente distribuídas na China, afetando negativamente a segurança no abastecimento de água para consumo e outros fins. Além da contaminação antrópica, as interações entre as águas superficiais e subterrâneas, incluindo a intrusão da água do mar, causaram a deterioração da qualidade das águas subterrâneas. O ecossistema e o geoambiente foram severamente afetados pelo rebaixamento dos recursos hídricos subterrâneos. A subsidência da terra devido à retirada excessiva de águas subterrâneas foi observada em mais de 50 cidades na China, com uma subsidência máxima acumulada de 2 a 3 m. Os ecossistemas dependentes das águas subterrâneas estão sofrendo degradação causada tanto pelas alterações no lençol freático como pela má qualidade das águas subterrâneas. Este artigo analisa essas mudanças na China, que ocorreram sob o impacto do rápido desenvolvimento econômico. Os efeitos do crescimento econômico nos sistemas de águas subterrâneas devem ser monitorados, compreendidos e preditos para proteger e gerenciar os recursos de águas subterrâneas para o futuro.






Similar content being viewed by others
References
Aeschbachhertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5:853–861
Aishan T, Halik Ü, Cyffka B, Kuba M, Abliz A, Baidourela A (2013) Monitoring the hydrological and ecological response to water diversion in the lower reaches of the Tarim River, Northwest China. Quat Int 311:155–162
Alam SMM, Farha MN, Zaman AKB (2015) An appraisal of arsenic and pesticide toxicity for economically terminal people: a snap shot of north-western part of Bangladesh. J Sci Res 7:159
Ali S, Thakur SK, Sarkar A, Shekhar S (2016) Worldwide contamination of water by fluoride. Environ Chem Lett 14(3):291–315
Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487
Brunner P, Li HT, Kinzelbach W, Li WP, Dong XG (2008) Extracting phreatic evaporation from remotely sensed maps of evapotranspiration. Water Resour Res 44(8):1291–1295. https://doi.org/10.1029/2007WR006063
Cai X, Ringler C (2007) Balancing agricultural and environmental water needs in China: alternative scenarios and policy options. Water Policy 9:95–108
Cao G, Zheng C, Scanlon BR, Liu J, Li W (2015) Use of flow modeling to assess sustainability of groundwater resources in the North China plain. Water Resour Res 49:159–175
Chai HW, Lei MQ (2004) The simulated analysis of contamination evolution of underground water by Jinti River. Soil Eng Found 18:61–63
Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 54:143–147
Chen L (2013) Modeling of the water flow and nitrate transport in the shallow aquifer of the Shaying River Basin and its contribution to river pollution (in Chinese with English abstract). MSc Thesis, Nanjing University, Nanjing, China
Chen H, Kang Y (1992) Condensed vapor and its role in the ecological environment of Shapotou region (in Chinese with English abstract). J Arid Res Environ 6:63–72
Chen C, Pei S, Jiao J (2003) Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeol J 11:275–287
Chen W, Hou Z, Wu L, Liang Y, Wei C (2010) Evaluating salinity distribution in soil irrigated with saline water in arid regions of Northwest China. Agric Water Manag 97(12):2001–2008
Chen L, Ma T, Du Y, Yang J, Liu L, Shan H, Liu C, Cai H (2014) Origin and evolution of formation water in North China plain based on hydrochemistry and stable isotopes (2H, 18O, 37Cl and 81Br). J Geochem Explor 145:250–259
Chen X, Chen L, Zhao J (2015) Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations. AGU Fall Meeting, San Francisco, December 2015
Chen L, Ma T, Du Y, Xiao C, Chen X, Liu C, Wang Y (2016) Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of southwestern Guangdong Province, China. J Volcanol Geother Res 318:45–54
Cheng G, Jin H (2012) Permafrost and groundwater on the Qinghai-Tibet plateau and in Northeast China. Hydrogeol J 21:5–23
Cheng GD, Wang GX (2006) Changing trend of drought and drought disaster in Northwest China and countermeasures (in Chinese with English abstract). Earth Sci Front 13:3–14
Cheng G, Xin L, Zhao W, Xu Z, Qi F, Xiao S, Xiao H (2014) Integrated study of the water-ecosystem-economy in the Heihe River basin. NSR 1(3):413–428
Coulon F, Jones K, Li H, Hu Q, Gao J, Li F, Chen M, Zhu YG, Liu R, Liu M (2016) China’s soil and groundwater management challenges: lessons from the UK’s experience and opportunities for China. Environ Int 91:196–200
Currell MJ, Cartwright I (2011) Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China. Hydrogeol J 19:835–850
Currell MJ, Cartwright I, Bradley DC, Han D (2010) Recharge history and controls on groundwater quality in the Yuncheng Basin, North China. J Hydrol 385:216–229
Currell M, Cartwright I, Raveggi M, Han D (2011) Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China. Appl Geochem 26:540–552
Dai JL, Zhang M, Hu QH, Huang YZ, Wang RQ, Zhu YG (2009) Adsorption and desorption of iodine by various Chinese soils: II. iodide and iodate. Geoderma 153:130–135
Dehaan RL, Taylor GR (2002) Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens Environ 80(3):406–417
Deng YM, Wang YX, Ma T (2009) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao plain, Inner Mongolia. Appl Geochem 24:587–59912
Di FY, Dong XG, Yang PN (2015) Analysis on situation of groundwater quality and change trends in Yanqi County typical irrigation area of Xinjiang, Yellow River (in Chinese with English abstract). 37:76–78
Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon BR (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59–60:143–156
Dong PH (2009) Evaluation on the water-land resource of space layout and constitution in Gansu Province (in Chinese with English abstract). Arid Land Geogr 32(6):834–840
Dong W, Xie W, Su X, Wen C, Cao Z, Wan Y (2018) Review: Micro-organic contaminants in groundwater in China. Hydrogeol J https://doi.org/10.1007/s10040-018-1760-z
Du T (2004) A study of test simulation on groundwater quality evolution after the South-to-North Water Transfer in southwestern area, Beijing (in Chinese with English abstract). MSc Thesis, Jilin University, Jinlin, China
Du H, Gao Q, Li F (1996) Trend analysis of surface water resources and dynamics in the interior drainage basins of Hexi Area (in Chinese with English abstract). J Nat Resour 2:44–54
Duan Y (1998) Research status on land subsidence and sustainable development in the 21st century of China (in Chinese with English abstract). Chin J Geol Hazard Control 9(2):1–5
Duan YH (2016) Seasonal variations of groundwater arsenic concentration in shallow aquifers at Jianghan Plain (in Chinese with English abstract). PhD Thesis, China University of Geosciences, Beijing
Fan ZL, Chen YN, Ma YJ, Li HP, Alishir K, Abdimijit (2008) Determination of suitable ecological groundwater depth in arid areas in northwest part of China (in Chinese with English abstract). J Arid Land Resour Environ 22(2):1–5
Fang C, Sun X (2006) Mechanism of urban system development and its space organization in northwest arid area with scarcity of water resource: the case of Hexi corridor (in Chinese with English abstract). J Desert Res 26:860–867
Feng W, Zhong M, Lemoine JM, Biancale R, Hsu HT, Xia J (2013) Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour Res 49(4):2110–2118
Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China plain: assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93
Gao X, Wang Y, Li Y, Guo Q (2007) Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China. Environ Geol 53:795–803
Gates JB, Scanlon BR, Mu X, Zhang L (2011) Impacts of soil conservation on groundwater recharge in the semi-arid loess plateau, China. Hydrogeol J 19:865–875
Ge X, Dong K, Luloff AE, Wang L, Xiao J (2016) Impact of land use intensity on sandy desertification: an evidence from Horqin Sandy Land, China. Ecol Indicators 61:346–358
Gorelick SM, Zheng C (2015) Global change and the groundwater management challenge. Water Resour Res 51:3031–3051
Guo Q (2012) Hydrogeochemistry of high-temperature geothermal systems in China: a review. Appl Geochem 27:1887–1898
Guo Z, Liu H (2005) Eco-depth of groundwater table for natural vegetation in inland basin, northwestern China. J Arid Land Res Environ 19:157–161
Guo Q, Wang Y (2012) Geochemistry of hot springs in the Tengchong hydrothermal areas, southwestern China. J Volcanol Geother Res 215-216:61–73
Guo H, Tang X, Yang S, Shen Z (2008) Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: evidence from sediment incubations. Appl Geochem 23:3267–3277
Guo Q, Wang Y, Liu W (2009) Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. J Volcanol Geother Res 180:9–20
Guo H, Wen D, Liu Z, Jia Y, Guo Q (2014a) A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Appl Geochem 41: 196–217.
Guo Q, Liu M, Li J, Zhang X, Wang Y (2014b) Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): formed via magmatic fluid absorption or geothermal steam heating? Bull Volcanol 76:868
Guo F, Jiang G, Polk JS, Huang X, Huang S (2015) Resilience of groundwater impacted by land use and climate change in a karst aquifer, South China. Water Environ Res 87:1990–1998
Guo Q, Liu M, Li J, Zhang X, Guo W, Wang Y (2017) Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet Geothermal Province, China. J Geochem Explor 172:109–119
Han G (2013) Comprehensive evaluation of seawater intrusion and ecological rehabilitation technology (in Chinese). MSc Thesis, Yantai University, Shandong Sheng, China
Han D, Kohfahl C, Song X, Xiao G, Yang J (2011) Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay China. Appl Geochem 26:863–883
Han DM, Song XF, Currell MJ, Yang JL, Xiao GQ (2014) Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China. J Hydrol 508:12–27
Han D, Post VEA, Song X (2015) Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers. J Hydrol 531:1067–1080
Hao AB, Li WP, Liang ZQ (2000) An approach to determine salinity contribution from mineral dissolution and evaporation for groundwaters in arid inland basin plain based on TDS and δ18O (in Chinese with English abstract). Hyddrogeol Eng Geol 1:4–6. https://doi.org/10.16030/j.cnki.issn.1000-3665.2000.01.002
Hao Y, Yeh TCJ, Gao Z, Wang Y, Zhao Y (2006) A gray system model for studying the response to climatic change: the Liulin karst springs, China. J Hydrol 328:668–676
He J, Charlet L (2013) A review of arsenic presence in China drinking water. J Hydrol 492:79–88
He J, An YH, Han SB (2008) Distribution and sources of fluorine ion in groundwater in Ganzhou district of Zhangye City (in Chinese with English abstract). Water Resour Protect 24(6):53–56
He J, Zhang FC, Han SB, Li XF, Yao XJ, Zhang H (2010) The distribution and genetic types of high-fluoride groundwater in northern China (in Chinese with English abstract). Geol China 37:621–626
Hu HZ (2014) Study of reactive transport of reclaimed water through vadose zone and its impact on the groundwater environment with prevention measures of seepage in lakes and rivers (in Chinese with English abstract). PhD Thesis, China Agricultural University, Beijing
Hu RL, Yue ZQ, Wang LC, Wang SJ (2004) Review on current status and challenging issues of land subsidence in China. Eng Geol 76:65–77
Hu BB, Jiang YX, Zhou J, Wang J, Xu SY (2008) Assessment and zonation of land subsidence disaster risk of Tianjin Binhai Area (in Chinese with English abstract). Sci Geogr Sin 28(5):693–697
Hu H, Jin Q, Kavan P (2014) A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustainability 6:5820–5838
Hua PL, Xi Q, Han GY, Liu JP, Zhang YM, Zhao YQ, Ma Y (2007) Investigation on iodine concentration in drinking water in Zhangjiakou City in 2003 (in Chinese with English abstract). Chin J Endemil 26:560–561
Hua S, Liang J, Zeng G, Xu M, Zhang C, Yuan Y, Li X, Li P, Liu J, Huang L (2015) How to manage future groundwater resource of China under climate change and urbanization: an optimal stage investment design from modern portfolio theory. Water Res 85:31–37
Huang TM, Pang ZH (2010) Changes in groundwater induced by water diversion in the lower Tarim River, Xinjiang Uygur, NW China: evidence from environmental isotopes and water chemistry. J Hydrol 387:188–201
Huang T, Pang Z (2012) The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River basin, NW China. Appl Ceochem 27:2382–2388
Huang SB, Han ZT, Zhao L, Kong XK (2015) Hydrochemistry indicating groundwater contamination and the potential fate of chlorohydrocarbons in combined polluted groundwater: a case study at a contamination site in North China. Bull Environ Cont Toxicol 94:589–597
Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J Environ Manag 162:306–325
Jia B, Ci L (2000) The primary estimation of water demand by the eco-environment in Xinjiang (in Chinese with English abstract). Acta Ecol Sin 20:243–250
Jia Y, Guo H (2013) Hot topics and trends in the study of high arsenic groundwater (in Chinese with English abstract). Adv Earth Science 28:51–61
Jia B, Xu Y (1998) The conception of the eco-environmental water demand and its classification in arid land: taking Xinjiang as an example (in Chinese with English abstract). Arid Land Geogr 21(2):8–12
Jia H, Liang S, Zhang Y (2015) Assessing the impact on groundwater safety of inter-basin water transfer using a coupled modeling approach. Front Environ Sci Eng 9:84–95
Jiang ZC, Yuan DX (2003) Rocky desertification in southwest karst region and its comprehensive management. China Geological Survey Bureau Karst Groundwater and Desertification research papers of China Guangxi (in Chinese with English abstract). Science and Technology Press, Nanning, China, pp 13–19
Jiang Z, Lian Y, Qin X (2014) Rocky desertification in Southwest China: impacts, causes, and restoration. Earth Sci Rev 132:1–12
Jiao JJ, Wang XS, Nandy S (2006) Preliminary assessment of the impacts of deep foundations and land reclamation on groundwater flow in a coastal area in Hong Kong, China. Hydrogeol J 14:100–114
Jiao X, Wang L, Wang L (2013) Evaluation of iodine concentration in drinking water at Puyang in 2011, China (in Chinese). J Endemil 32:590–590
Jin X, Wan L, Zhang Y, Xue Z, Yin Y (2007) A study of the relationship between vegetation growth and groundwater in the Yinchuan plain (in Chinese with English abstract). Earth Sci Front 14:197–203
Jin X, Hu G, Shi X (2009) Relationship between soil salinization and the vegetation growing, groundwater depth in the Yinchuan plain (in Chinese with English abstract). Geoscience 23:23–27
Jin LX, Liu WJ, Wang D, Zhu Q, Bai H, Sun YP (2013) The establishment and management of Chinese groundwater environment monitoring network (in Chinese with English abstract). Environ Monit Forewarning 5(2):1–4
Jolly ID, Mcewan KL, Holland KL (2010) A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 1:43–58
Kaneko S, Kondoh A, Shen Y, Tang C (2005) The relation among the water cycle, grain production and human activities in the North China plain. Suimon Mizu Shigen Gakkaishi (J Jpn Soc Hydrol Water Res) 18:575–583
Kang ES, Xin LI, Zhang JS, Hu XL (2004) Water resources relating to desertification in the Hexi area of Gansu Province, China. J Glaciol Geocryol 26:657–667
Kendy E, Zhang Y, Liu C, Wang J, Steenhuis T (2004) Groundwater recharge from irrigated cropland in the North China plain: case study of Luancheng County, Hebei Province, 1949–2000. Hydrol Process 18:2289–2302
Kinzelbach W, Bauer P, Siegfried T, Brunner P (2003) Sustainable groundwater management: problems and scientific tools. Episodes 26(4):279–284
Kong XL, Wang SQ, Zhao H, Yuan RQ (2015) Distribution characteristics and source of fluoride in groundwater in lower plain area of North China plain: a case study in Nanpi County. Environ Sci 36:4051–4059
Kong X, Wang S, Liu B, Sun H (2016) Effect of water diversion on hydro-chemical characteristics of surface water and groundwater in lowland area of the North China plain: a case study of Nanpi County, Hebei Province (in Chinese with English abstract). Chin J Eco-Agric 24:1135–1144
Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:245–255
Li YT (2003) Study on the penetration mechanism and influence on groundwater by pollution of Weihe River using the field test and numerical model (in Chinese with English abstract). MSc Thesis, Chang’an University, Beilin, China
Li WW (2015) Research on coupling simulation of surface and groundwater in inner row section of the middle South-to-North Water Diversion Project (in Chinese with English abstract). MSc Thesis, China University of Geosciences, Beijing
Li P (2016) Groundwater quality in western China: challenges and paths forward for groundwater quality research in western China. Expos Health 8:305–310
Li HM, Chen HH, Zheng XL (2006) Application of riverbed aquiferous system to indoor simulation of decontamination of aromatic hydrocarbons (in Chinese with English abstract). J Earth Sci 31:873–878
Li J, Wang YR, Li KF, Rui JL (2006) Eco-hydraulics method of calculating the lowest ecological water demand in river channels (in Chinese with English abstract). J Hydraul Eng 37:1169–1174
Li Y, Liang Q, Cai C, Qin L, Xiao G (2012) Investigation of iodine in salt, water and urine in Maoming (in Chinese with English abstract). Guangdong Trace Elem Sci 19:5–9
Li B, Jiang Y, Zhong G, Qiu Y, Chen J (2013) The investigation of groundwater iodine and residents iodine nutrition at Meizhou in 2012 (in Chinese with English abstract). Chin R Health 3:10–11
Li J, Wang Y, Guo W, Xie X, Zhang L, Liu Y, Kong S (2014a) Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics. Sci Total Environ 468:738–745
Li J, Li F, Liu Q, Suzuki Y (2014b) Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the piedmont of south Taihang Mountains, China. Environ Sci Process Impacts 16:2764–2773
Li J, Li F, Liu Q, Zhang Y (2014c) Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: evidence from isotopes and hydrochemistry. Sci Total Environ 472:979–988
Li L, Wu Y, Wang YX, Pi K, Liu P, Li JX (2014) Fluorine speciation in sediments from endemic fluorosis-impacted areas in Datong Basin (in Chinese with English abstract). Saf Environ Eng 21(5):52–57
Li J, Pu L, Han M, Zhu M, Zhang R, Xiang YZ (2014e) Soil salinization research in China: advances and prospects. J Geogr Sci 24(5):943–960
Li J, Liu H, Su Z, Fan X (2015) Changes in wind activity from 1957 to 2011 and their possible influence on aeolian desertification in northern China. J Arid Land 7:755–764
Li J, Wang Y, Xie X (2016a) Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China. Sci Total Environ 544:158–167
Li J, Wang Y, Xie X, Depaolo DJ (2016b) Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater. J Hydrol 543:293–304
Li S, Birk S, Xue L, Ren H, Chang J, Yao X (2016c) Seasonal changes in the soil moisture distribution around bare rock outcrops within a karst rocky desertification area (Fuyuan County, Yunnan Province, China). Environ Earth Sci 75:1482
Li S, Cheng J, Li M, Cui L (2016d) Water quality characteristics and evolution of groundwater system influenced by human exploitation activity in Hengshui area (in Chinese with English abstract). South-North Water Transf Water Sci Technol 14:55–60
Li C, Liu T, Xu S, Gao X, Wang Y (2016e) Groundwater salinization in shallow aquifers adjacent to a low-altitude inland salt lake: a case study at Yuncheng Basin, northern China. Environ Earth Sci 75:370
Li X, Tang C, Han Z, Cao Y (2016f) Hydrochemical characteristic and interaction process of surface and groundwater in mid-lower reach of Hanjiang River, China. Environ Earth Sci 75:418
Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res Int 24:13224–13234
Li J, Zhou H, Qian K, Xie X, Xue X, Yang Y, Wang Y (2017a) Fluoride and iodine enrichment in groundwater of North China plain: evidences from speciation analysis and geochemical modeling. Sci Total Environ 598:239–248
Li J, Li F, Liu Q (2017b) PAHs behavior in surface water and groundwater of the Yellow River estuary: evidence from isotopes and hydrochemistry. Chemosphere 178:143–153
Liang P, Ren J (2005) Investigation of IQ status of 1632 children (8~10 year old) at Xuzhou in 2000 (in Chinese). End Dis Bull 20:111–111
Liang B, Wang C, Wang PF, Qian J, Zheng XY (2003) Impacts of river wastewater unsaturated infiltration on its offshore soil and groundwater quality (in Chinese with English abstract). Adv Water Sci 14:548–553
Lin XY, Wang Y (eds) (2017) Groundwater science. Science Press, Beijing
Lin ML, Peng WH, Gui HR (2016) Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, northern Anhui Province, China. Environ Monit Asses 188:202
Liu JC (2009) Investigation on iodine concentration in drinking water in the areas south of Yellow River in Binzhou City in 2008. Prev Med Tribune 15(8):691–692
Liu D, Chen Q, Yu Z (1980) Geochemical environment problems concerning the endemic fluorine disease in China (in Chinese with English abstract). Geochimica 33:13–22
Liu C, Yu J, Eloise K (2001) Groundwater exploitation and its impact on the environment in the North China plain. Water Int 26:265–272
Liu J, Zheng C, Zheng L, Lei Y (2008) Ground water sustainability: methodology and application to the North China plain. Groundwater 46:897–909
Liu Q, Li F, Zhang Q, Li J, Zhang Y, Tu C, Ouyang Z (2014) Impact of water diversion on the hydrogeochemical characterization of surface water and groundwater in the Yellow River Delta. Appl Geochem 48:83–92
Liu F, Zhang H, Qin Y, Dong J, Xu E, Yang Y, Zhang G, Xiao X (2016a) Semi-natural areas of Tarim Basin in Northwest China: linkage to desertification. Sci Total Environ 573:178–188
Liu S, Gao M, Tang Z, Hou G, Guo F (2016b) Responses of submarine groundwater to silty-sand coast reclamation: a case study in south of Laizhou Bay, China. Estuar Coast Shelf Sci 181:51–60
Long H, Zhu Q, Tian P, Hu W (2015) Technologies and applications of geophysical exploration in deep geothermal resources in China. In: Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 2015
Lu T, He G, Wang J, Zhang M (2011) Investigation on distribution of high iodine region and its epidemiology in the city of Xinxiang (in Chinese with English abstract). Chin J Cont End Dis 26:203–205
Lu C, Zhao T, Shi X, Cao S (2016) Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J Cleaner Product 176:1213–1222
Luo W, Zhang X, Gao X (2017) Impact of human activities on environmental fluoride pollution in Yuncheng Basin (in Chinese). Saf Environ Eng 24(2):46–52
Ma R (2012) Current situation of Chinese groundwater monitoring network (in Chinese). Agric Technol 32(5):20–22
Ma H (2016) Major ion chemistry of groundwater in the Sangong River watershed, northwestern China. Environ Earth Sci 75:1–17
Ma T, Wang Y, Yan S, Ma R, Yan C, Zhou X (2005) Causes of land subsidence in Taiyuan city, Shanxi, China land subsidence. Proceedings of the Seventh International Symposium on Land Subsidence, Shanghai, October 2005
Ma R, Wang Y, Ma T, Sun Z, Yan S (2006) The effect of stratigraphic heterogeneity on areal distribution of land subsidence at Taiyuan, northern China. Environ Geol 50:551–568
Ma F, Yang YS, Yuan R, Cai Z, Pan S (2007) Study of shallow groundwater quality evolution under saline intrusion with environmental isotopes and geochemistry. Environ Geol 51:1009–1017
Ma W, Mao Z, Yu Z, Mensvoort MEFV, Driessen PM (2008) Effects of saline water irrigation on soil salinity and yield of winter wheat-maize in North China plain. Irrig Drainag Syst 22(1):3–18
Ma L, Lowenstein TK, Li B, Jiang P, Liu C, Zhong J, Sheng J, Qiu H, Wu H (2010) Hydrochemical characteristics and brine evolution paths of lop nor basin, Xinjiang Province, western China. Appl Geochem 25:1770–1782
Ma J, Pan F, He J, Chen L, Fu S, Jia B (2012) Petroleum pollution and evolution of water quality in the Malian River basin of the Longdong loess plateau, northwestern China. Environ Earth Sci 66:1769–1782
Ma F, Wei A, Deng Q, Zhao H (2015) Hydrochemical characteristics and the suitability of groundwater in the coastal region of Tangshan, China. J Earth Sci 25:1067–1075
Mainguet M (1991) Desertification. Springer, Berlin
Mclaughlin D, Kinzelbach W (2015) Food security and sustainable resource management. Water Resour Res 51(7):4966–4985
Ministry of Ecology and Environment of the People’s Republic of China (2011) National groundwater pollution and control plan (2011–2020). http://www.gov.cn/gongbao/content/2012/content_2121713.html. Accessed May 2018
Ministry of Water Resources of the People’s Republic of China (2015) China Water Resources Bulletin. http://www.mwr.gov.cn/sj/tjgb/szygb/201612/t20161229_783348.html. Accessed May 2018
Mo G, Huiqing X (2005) Investigation on iodine concentration in drinking water in Jiaxing (in Chinese). Zhejiang J Prev Med 17:27–27
National Health and Family Planning Commission of China (2016) Statistical review of Chinese health and family planning. Beijing Union Medical University Press, Beijing
Norra S, Berner ZA, Agarwala P, Wagner F, Chandrasekharam D, Stüben D (2005) Impact of irrigation with as rich groundwater on soil and crops: a geochemical case study in West Bengal Delta plain, India. Appl Geochem 20:1890–1906
Pan YL, Su CL, Wang YX, Wu X (2013) Distribution characteristics and controlling factors of fluorine content in sediments of Shanyin-Ying county, Datong Basin, northern China (in Chinese with English abstract). J Mineral Petrol 33(2):109–114
Pei H, Scanlon BR, Shen Y, Reedy RC, Long D, Liu C (2015) Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China plain and US High Plains. Environ Res Lett 10:1–25
Qiu J (2010) China faces up to groundwater crisis. Nature 466:308
Ren F, Jiao S (1988) Distribution and formation of high-fluorine groundwater in China. Environ Geol Water Sci 12:3–10
Ren F, Zeng J, Liu W, Zhang C (1996) Hydrogeochemical environment of high fluorine groundwater and the relation between the speciation of fluorine and the diseased ratio of endemic fluorosis: a case study of the North China Plain (in Chinese with English abstract). Acta Geosci Sin 17(1):85–97
Reynolds JF, Smith DMS (2002) Global desertification: do humans cause deserts? Dahlem University Press, Berlin
Rodríguezlado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341:866–868
Rohden CV, Kreuzer A, Chen Z, Kipfer R, Aeschbach-Hertig W (2010) Characterizing the recharge regime of the strongly exploited aquifers of the North China plain by environmental tracers. Water Resour Res 46:2621–2628
Ruan Z, Yu B, Wang L, Pan Y, Tan G (2013) Prediction of buried calcite dissolution in the Ordovician carbonate reservoir of the Tahe oilfield, NW China: evidence from formation water. Chemie der Erde Geochem 73:469–479
Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370
Schaefer MV, Ying SC, Benner SG, Duan Y, Wang Y, Fendorf S (2016) Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River basin. Environ Sci Technol 50:3521–3529
Schaefer MV, Guo X, Gan Y, Benner SG, Griffin AM, Gorski CA, Wang Y, Fendorf S (2017) Redox controls on arsenic enrichment and release from aquifer sediments in central Yangtze River basin. Geochim Cosmochim Acta 204:104–119
Schilling OS, Doherty J, Kinzelbach W, Wang H, Yang PN, Brunner P (2014) Using tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater–surface water–vegetation interactions. J Hydrol 519:2258–2271
Shen Z, Guo H, Xu G, Wang C (2010) Abnormal groundwater chemistry and endemic disease (in Chinese). Chin J Nat 32(2):83–89
Shen B, Xiao S, Bao H, Kaufman AJ, Zhou C, Yuan X (2011) Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation. Geochim Cosmochim Acta 75:1357–1373
Shetaya WH, Young SD, Watts MJ, Ander EL, Bailey EH (2012) Iodine dynamics in soils. Geochim Cosmochim Acta 77:457–473
Shi XQ, Xue YQ, Ye SJ, Wu JC, Zhang Y, Yu J (2007) Characterization of land subsidence induced by groundwater withdrawals in Su-xi-Chang area, China. Environ Geol 52:27–40
Shi X, Xue Y, Wu J, Ye S, Zhang Y, Wei Z, Yu J (2008) Characterization of regional land subsidence in Yangtze Delta, China: the example of Su-xi-Chang area and the city of Shanghai. Hydrogeol J 16:593–607
Shimamoto YS, Takahashi Y, Terada Y (2011) Formation of organic iodine supplied as iodide in a soil-water system in Chiba, Japan. Environ Sci Technol 45:2086–2092
Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18:1453–1477
Song X (2010) Modeling application in evaluating groundwater–surface water interactions due to phosphate mining activities. Hydrogeol Regulatory Environ Phosphate Mining Process 42(5):548–548
Song C, Deng W (2000) Characters of groundwater and influence on the interior salt-affected soil in the west of Jilin Province (in Chinese with English abstract). Sci Geogr Sin 20:246–250
Sracek O, Wanke H, Ndakunda NN, Mihaljevič M, Buzek F (2015) Geochemistry and fluoride levels of geothermal springs in Namibia. J Geochem Explor 148:96–104
Su LT, Zhang ZY, Song YD, Yu MT (2005) Study on soil desertification in response to groundwater level and its prediction model in the lower reaches of Tarim River (in Chinese with English Abstract). J Arid Land Resour Environ 9(3):107–112
Su H, Kang T, Zhang Y, Ye J, Ke J (2006) The investigation of iodine concentration in groundwater at Xiamen (in Chinese). J Environ Health 23:532
Sun ZY, Ma T, Ma J, Ma R, Yan CM (2007) Effect of strata heterogeneity on spatial pattern of land subsidence in Taiyuan City. Yantu Lixue/Rock Soil Mech 28:399–408
Sun Z, Long X, Ma R (2016a) Water uptake by saltcedar (Tamarix ramosissima) in a desert riparian forest: responses to intra-annual water table fluctuation. Hydrol Process 30:1388–1402
Sun Z, Ma R, Wang Y, Hu Y, Sun L (2016b) Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China. Hydrol Process 30:1884–1902
Sun Z, Ma R, Wang Y, Ma T, Liu Y (2016c) Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China. Hydrogeol J 24:1–20
Tan J (1989) The atlas of endemic diseases and their environments in the People’s Republic of China (in Chinese). Science Press, Beijing
Tang QC (1995) The development in oases and rational use of water resources (in Chinese with English abstract). J Arid Land Resour Environ 9(3):107–112
Tang QC, Zhang JB (2011) Water resources and eco environment protection in the arid regions in northwest of China (in Chinese with English abstract). Prog Geogr 20:227–233
Tang ZC, Jiang XK, Liang W, Zhang L (2006) Investigation on the distribution of high iodine region and inhabitant iodine nutritional status in the city of Liaocheng (in Chinese with English abstract). Chin J Endemiol 25:683–685
Tang Q, Xu Q, Zhang F, Huang Y, Liu J, Wang X, Yang Y, Liu X (2013) Geochemistry of iodine-rich groundwater in the Taiyuan Basin of Central Shanxi Province, North China. J Geochem Explor 135:117–123
Taylor RG, Scanlon B, Döll P, Rodell M, Beek RV, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M (2013) Ground water and climate change. Nat Clim Chang 3:322–329
Tufano KJ, Fendorf S (2008) Confounding impacts of iron reduction on arsenic retention. Environ Sci Technol 42:4777–4783
Tursun K, SHI L, Han G, Mannisaguli T (2008) Response of vegetation and desertification to groundwater change due to emergency water supply in lower reaches of Tarim River (in Chinese with English abstract). J Desert Res 28:1033–1038
Vithanage M, Bhattacharya P (2015) Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett 13:131–147
Wan JT, Hao QC, Gong GR, Chen SU, Cui YL, Liu Q (2013) Distribution and genesis of high-fluorine groundwater in southwestern Shandong Province (in Chinese with English abstract). Geoscience 27:448–453
Wang YX (2007) Groundwater contamination (in Chinese). Higher Education Press, Beijing
Wang QR (2010) Studies of numerical simulation of the water quality and quantity transport under sea surface water and groundwater interaction. Master MSc Thesis, China University of Geosciences, Beijing
Wang Y (2016) Numerical simulation of regional land subsidence in coastal area of North Jiangsu (in Chinese with English abstract). MSc Thesis, Nanjing University, Nanjing, China
Wang G, Cheng G (2001) Fluoride distribution in water and the governing factors of environment in arid north-West China. J Arid Environ 49:601–614
Wang Y, Jiao JJ (2012) Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. J Hydrol 438-439:112–124
Wang X, Kawahara, Guo XJ (1999) Fluoride contamination of groundwater and its impacts on human health in Inner Mongolia area. Aqua 48:146–153
Wang W, Luan Y, Yang Z, Qiao X, Yang X (2001) Influence on water resource and eco-environment system of Geermu alluvial fan by great artificial projects (in Chinese with English abstract). J Xian Eng Univ
Wang G, Yang L, Chen L, Kubota J (2005) Impacts of land use changes on groundwater resources in the Heihe River basin (in Chinese with English abstract). Acta Geograph Sin 60:456–466
Wang JX, Huang JK, Blanke A, Huang QQ, Rozelle S, Giordano M, Villholth KG (2007) The development, challenges and management of groundwater in rural China. In: Giordano M, Villholth KG (eds) The agricultural groundwater revolution-Opportunities and threats to development, chap 3. International Water Management Institute, Colombo, Sri Lanka, pp 37–62
Wang YX, Shvartsev SL, Su CL, Evans WC (2009) Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China. Appl Geochem 24:641–64912
Wang Y, Chen ZY, Fei YH, Liu J, Wei W (2011) Estimation of water released from aquitard compaction indicated by fluorine in Cangzhou (in Chinese with English abstract). J Jilin Univ 41:298–302
Wang J, Gao W, Xu S, Yu L (2012) Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim Chang 115:537–558
Wang P, Yu J, Zhang Y, Liu C (2013a) Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, Northwest China. J Hydrol 476:72–86
Wang T, Yan CZ, Song X, Li S (2013b) Landsat images reveal trends in the aeolian desertification in a source area for sand and dust storms in China’s Alashan plateau (1975–2007). Land Degrad Dev 24:422–429
Wang S, Tang C, Song X, Wang Q, Zhang Y, Yuan R (2014) The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China plain. Sci Total Environ 482–483:325–335
Wang J, Gao Y, Wang S (2015a) Land use/cover change impacts on water table change over 25 years in a desert-oasis transition zone of the Heihe River basin, China. Water 8:11
Wang X, Zhou X, Zhao J, Zheng Y, Song C, Long M, Chen T (2015b) Hydrochemical evolution and reaction simulation of travertine deposition of the Lianchangping hot springs in Yunnan, China. Quat Int 374:62–75
Wang JZ, Wu JL, Jia HJ (2016a) Analysis of spatial variation of soil salinization using a hydrochemical and stable isotopic method in a semiarid irrigated basin, Hetao plain, Inner Mongolia, North China. Environ Proc 3:723–733
Wang S, Tang C, Song X, Yuan R, Han Z, Pan Y (2016b) Factors contributing to nitrate contamination in a groundwater recharge area of the North China plain. Hydrol Process 30:2271–2285
Wang X, Lin L, Kong M, Cheng H (2016c) Chinese hydrogeochemical investigation report. Chinese Geological Survey, Beijing. http://www.cgs.gov.cn/ddztt/cgs100/bxcg/tdkjcx/201611/t20161125_417837.html. Accessed May 2018
Wei L (1992) Development of arsenic mineral resources and environment control (in Chinese with English Abstract). Hunan Geol 11(3):259–262
Wei C, Guo H, Zhang D, Wu Y, Han S, An Y, Zhang F (2016a) Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China. Environ Geochem Health 38:275–290
Wei M, Liu W, Bai F, Zhang M (2016b) Progress in the research of environmental monitoring of groundwater at home and abroad (in Chinese with English abstract). Environ Protect Sci 42(5):15–18
Wen D, Zhang F, Zhang E, Wang C, Han S, Zheng Y (2013) Arsenic, fluoride and iodine in groundwater of China. J Geochem Explor 135:1–21
Werner AD, Zhang Q, Xue L, Smerdon BD, Li X, Zhu X, Yu L, Li L (2013) An initial inventory and indexation of groundwater mega-depletion cases. Water Resour Manag 27:507–533
Williams MAJ, Balling RC, Jr (2005) Interactions of desertification and climate. Arnold, London
Xie JZ (2004) Water resources problems and water-saving strategies in Hexi corridor. J Desert Res 24:802–803
Xie Z, Zhang C, Han D, Zhang M (2005) Investigation of iodine concentration in drinking water at Jinan (in Chinese). Chin J Public Health Manag
Xie X, Wang Y, Li J, Su C, Duan M (2013) Hydrogeochemical and isotopic investigations on groundwater salinization in the Datong Basin, northern China. JAWRA 49:402–414
Xu B, Wang G (2016) Surface water and groundwater contaminations and the resultant hydrochemical evolution in the Yongxiu area, west of Poyang Lake, China. Environ Earth Sci 75:184
Xu F, Ma T, Shi L, Dong Y, Liu L, Zhong X, Wang Y (2012) Hydrogeochemical characteristics of high iodine groundwater in the Hetao plain, Inner Mongolia (in Chinese with English abstract). Hydrogeol Eng Geol 39:8–15
Xue Y, Wu J, Ye S, Zhang Y (2000) Hydrogeological and hydrogeochemical studies for salt water intrusion on the south coast of Laizhou Bay, China. Ground Water 38:38–45
Xue YQ, Zhang Y, Ye SJ, Wu JC, Li QF (2005) Land subsidence in China. Environ Geol 48:713–720
Yan S, Ma R, Wang YX (2006) The effect of tectonic activity on land subsidence in Taiyuan (in Chinese). Earth Sci-J Chin Univ Geosci 31:120–125
Yan Q, Zhu J, Zheng X, Jin C (2015) Causal effects of shelter forests and water factors on desertification control during 2000-2010 at the Horqin Sandy land region, China (in Chinese with English abstract). J Forest Res (Eng edn.) 26:33–45
Yang Z (2006) Ecological water consumption pattern of watershed (in Chinese). Science Press, Beijing
Yang XT (2011) Mechanism study on contaminant transport in river-groundwater system during riverside pumping (in Chinese with English abstract). PhD Thesis, Chang’an University, Beilin, China
Yang X, Zhang K, Jia B, Ci L (2005) Desertification assessment in China: an overview. J Arid Environ 63:517–531
Yang L, Song X, Zhang Y, Han D, Zhang B, Long D (2012a) Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes. Hydrol Earth Syst Sci 9:5955–5981
Yang Y, Li GM, Dong YH, Li M, Yang JQ, Zhou D, Yang ZS, Zheng FD (2012b) Influence of south to north water transfer on groundwater dynamic change in Beijing plain. Environ Earth Sci 65:1323–1331
Yang X, Chen Y, Pacenka S, Gao W, Zhang M, Sui P, Steenhuis TS (2015) Recharge and groundwater use in the North China plain for six irrigated crops for an eleven year period. PLoS One 10:e0115269
Ye A, Duan Q, Chu W, Xu J, Mao Y (2015) The impact of the south-north water transfer project (CTP)’s central route on groundwater table in the Hai River basin, North China. Hydrol Process 28:5755–5768
Yi L, Fang Z, He X, Chen S, Wei W, Qiang Y (2011) Land subsidence in Tianjin, China. Environ Earth Sci 62:1151–1161
Yu G, Sun D, Zheng Y (2007) Health effects of exposure to natural arsenic in groundwater and coal in China: an overview of occurrence. Environ Health Perspect 115:636–642
Yuan C (1964) Determination of groundwater critical depth (in Chinese). J Hydraul Eng 3:53–55
Yuan DX (1997) Rock desertification in the subtropical karst of South China. Geomorphology 108:81–90
Yuan LR, Xin P, Kong J, Li L, Lockington D (2011) A coupled model for simulating surface water and groundwater interactions in coastal wetlands. Hydrol Process 25:3533–3546
Zhang GX (2004) Discussion of strategies for sustainable water resource utilization on Songnen plain. Bull Soil Water Conserv 24(1):69–73
Zhang SQ, Wang YG, Zhu H, Cao WB, Shi WD, Huang Y, Yong Guo LI (2003) Changes in water environment and their ecologicgeologic environmental effects in the headwater area of the Yellow River. Hydrogeol Eng Geol 30:11–14
Zhang Z, Zhang G, Ren H, Fei J (2006) The evolution of regional groundwater and its interaction with adjacent spheres (in Chinese). Geological Publishing House, Beijing
Zhang G, Deng W, Yang YS, Salama RB (2007) Evolution study of a regional groundwater system using hydrochemistry and stable isotopes in Songnen plain, Northeast China. Hydrol Process 21:1055–1065
Zhang Y, Xue YQ, Wu JC, Yu J, Wei ZX, Li QF (2008) Land subsidence and earth fissures due to groundwater withdrawal in the southern Yangtse Delta, China. Environ Geol 55:751
Zhang EY, Zhang FC, Qian Y, Ye NJ, Gong JS, Wang YS (2010) The distribution of high iodine groundwater in typical areas of China and its inspiration (in Chinese with English abstract). Geol China 37:797–802
Zhang E, Wang Y, Qian Y, Ma T, Zhang D, Zhan H, Zhang Z, Fei Y, Wang S (2013a) Iodine in groundwater of the North China plain: spatial patterns and hydrogeochemical processes of enrichment. J Geochem Explor 135:40–53
Zhang S, Xu C, Creeley D, Ho YF, Li HP, Grandbois R, Schwehr KA, Kaplan DI, Yeager CM, Wellman D (2013b) Iodine-129 and iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite. Environ Sci Technol 47:9635–9642
Zhang B, Song X, Zhang Y, Han D, Tang C, Yang L, Wang ZL (2015a) The relationship between and evolution of surface water and groundwater in Songnen plain, Northeast China. Environ Earth Sci 73:8333–8343
Zhang F, Tiyip T, Johnson VC, Kung H, Ding J, Zhou M, Fan Y, Kelimu A, Nurmuhammat I (2015b) Evaluation of land desertification from 1990 to 2010 and its causes in Ebinur Lake region, Xinjiang China. Environ Earth Sci 73:5731–5745
Zhang W, Chen X, Tan H, Zhang Y, Cao J (2015c) Geochemical and isotopic data for restricting seawater intrusion and groundwater circulation in a series of typical volcanic islands in the South China Sea. Mar Pollut Bull 93:153–162
Zhang B, Song X, Zhang Y, Ying MA, Tang C, Yang L, Wang ZL (2016a) The interaction between surface water and groundwater and its effect on water quality in the second Songhua River basin, Northeast China. J Earth Syst Sci 125:1–13
Zhang X, Li X, Gao X (2016b) Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China. Environ Sci Pollut Res Int 23:6286–6299
Zhang B, Song X, Zhang Y, Han D, Tang C, Yang L, Wang ZL (2017) The renewability and quality of shallow groundwater in Sanjiang and Songnen plain, Northeast China. J Int Agricul (Engl. edn.) 16:229–238
Zhao TM, Li YS (2015) Groundwater quality degradation influencing factors in intensive cropping area (in Chinese with English abstract). J Anhui Agric Sci 43(17):115–119
Zhao C, Wang Y, Chen X, Li B (2005) Simulation of the effects of groundwater level on vegetation change by combining FEFLOW software. Ecol Model 187:341–351
Zhao L, Wu S, Zhou J, Wang J (2007) Eco-geochemical investigation on the endemic As and F poisoning in Datong Basin (in Chinese with English abstract). Earth Sci Front 14(2):225–235
Zhao H, Xu C, Chen G, Wang X, Sun F, Wang X (2014) Investigation of iodine concentration in drinking water and residents iodine nutrition at Shangqiu (in Chinese). Contemp Med 20:162–163
Zhao J, Lin J, Wu J, Yang Y, Wu J (2016a) Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City in northern China. Environ Earth Sci 75:1–18
Zhao Z, Wu J, Yuan G, Chen J, Xu X, Yan C, Bai Y (2016b) Hydrochemical investigation of shallow groundwater in northwest margin of Lop Nur, Northwest China. Environ Earth Sci 75:214
Zheng C, Liu J (2013) China’s “Love Canal” moment? Science 340:810
Zheng C, Liu J, Cao G, Kendy E, Wang H, Jia Y (2010) Can China cope with its water crisis? Perspectives from the North China plain. Ground Water 48:350–354
Zheng Q, Ma T, Wang Y, Yan Y, Liu L, Liu L (2017) Hydrochemical characteristics and quality assessment of shallow groundwater in Xincai River basin, northern China. Proced Earth Planet Sci 17:368–371
Zhong HP, Liu H, Wang Y, Ya T, Geng LH, Yan ZJ (2002) Relationship between Ejina oasis and water resources in the lower Heihe River basin (in Chinese with English abstract). Adv Water Sci 13:223–228
Zhou G, Wei X, Wu Y, Liu S, Huang Y, Yan J, Zhang D, Zhang Q, Liu J, Meng Z (2011) Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China. Glob Chang Biol 17:3736–3746
Zhou J, Zhang Y, Zhou A, Liu C, Cai H, Liu Y (2016) Application of hydrochemistry and stable isotopes (δ 34 S, δ 18 O and δ 37 cl) to trace natural and anthropogenic influences on the quality of groundwater in the piedmont region, Shijiazhuang, China. Appl Geochem 71:63–72
Zhu J, Hu K, Lu X, Huang X, Liu K, Wu X (2015a) A review of geothermal energy resources, development, and applications in China: current status and prospects. Energy 93:466–483
Zhu L, Gong H, Li X, Wang R, Chen B, Dai Z, Teatini P (2015b) Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng Geol 193:243–255
Acknowledgements
This research was financially supported by the Grant for Innovative Research Groups of the National Natural Science Foundation of China (NSFC) (Grant No.41521001). We thank Prof. Xueyu Lin of Jilin University for her invaluable advice and continuous support. Under her leadership, we implemented the research project on Hydrogeology Discipline Development Strategies supported by NSFC and Chinese Academy of Science (Grant No. L1724016), together with our colleagues across China. As a matter of fact, this special issue is dedicated to her and her contemporaries of the Chinese community of hydrogeologists, to express our sincerely gratitude to them as our teachers for their great contributions to the development of hydrogeology in China.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the special issue “Groundwater sustainability in fast-developing China”
Rights and permissions
About this article
Cite this article
Wang, Y., Zheng, C. & Ma, R. Review: Safe and sustainable groundwater supply in China. Hydrogeol J 26, 1301–1324 (2018). https://doi.org/10.1007/s10040-018-1795-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-018-1795-1