Abstract
A methodological procedure is proposed for determining the renewal period (RP), which expresses the ratio of total storage to recharge of carbonate aquifers, and it was applied to the overexploited moderate-size Becerrero carbonate aquifer (southern Spain). To this end, geological and subsurface data—time domain electromagnetic (TEM) soundings and borehole logs—were integrated to construct a three-dimensional (3D) geological model of the aquifer. The interconnected porosity was estimated by analyzing 73 rock samples. The resulting 3D geometrical model makes it possible to quantify the fractions of the aquifer having a confined or unconfined behaviour. Based on the total storage capacity (179 · 106–514 · 106 m3) and available aquifer recharge estimation (4.8 · 106–6.4 · 106 m3/year), an RP between 37 and 106 years is obtained. In view of the RP, an exploitation rate slightly lower than the average recharge of the system is recommended, so that the piezometric level will be stable but below the discharge head that is produced through the springs in natural conditions. The proposed methodology to obtain an aquifer RP and the management strategies designed accordingly are of broad interest, especially for carbonate aquifers, which are abundant in arid and semiarid regions.
Résumé
Une procédure méthodologique est proposée pour déterminer la durée du renouvellement, qui exprime le ratio de la capacité totale de stockage à la recharge d’aquifères carbonatés et a été appliquée à l’aquifère surexploité, de dimensions moyennes, de Becerrero (Sud de l’Espagne). A cette fin, des données géologiques et de sub-surface (sondages électromagnétiques dans le domaine temps et logs de forage ont été intégrés pour construire un modèle géologique tridimensionnel de l’aquifère. La porosité d’interconnexion a été estimée en analysant 73 échantillons de roche. Le modèle géométrique 3D résultant a rendu possible la caractérisation des parties captives et non captives de l’aquifère. En se basant sur la capacité totale de stockage (179 · 106–514 · 106 m3) et sur une estimation de la recharge disponible de l’aquifère (4.8 · 106–6.4 · 106 m3/an), on obtient une durée de renouvellement comprise entre 37 et 106 ans. Au vu de la durée de renouvellement, un taux d’exploitation sensiblement plus faible que la recharge moyenne du système est recommandé, afin que le niveau piézométrique reste stable, mais en-dessous du débit de pointe produit au droit des sources dans des conditions naturelles. La méthodologie proposée pour obtenir la durée de renouvellement de l’aquifère et les stratégies de gestions conçues en conséquence sont d’un grand intérêt, spécialement pour les aquifères carbonatés, qui sont nombreux dans les régions arides et semi-arides.
Resumen
Se propone un procedimiento metodológico para determinar el período de renovación (RP), definido como la razón entre el almacenamiento total y la recarga, de acuíferos carbonáticos. Esta metodología se ha aplicado al acuífero carbonático de Becerrero (sur de España) que tiene un tamaño moderado y está actualmente sobreexplotado. A este fin, se integraron datos geológicos y de subsuelo —sondeos electromagnéticos en el dominio del tiempo (TEM) y datos de sondeos mecánicos— para construir un modelo geológico tridimensional (3D) del acuífero. La porosidad interconectada fue estimada tras analizar 73 muestras de rocas. El modelo geométrico 3D resultante permite diferenciar los sectores del acuífero que tienen un comportamiento confinado y libre. La capacidad total de almacenamiento (179 · 106–514 · 106 m3) y la recarga estimadas para el acuífero (4.8 · 106–6.4 · 106 m3/año), permiten obtener un RP entre 37 y 106 años. En vistas a este RP, se recomienda un ritmo de explotación ligeramente más bajo que la recarga promedio del sistema, de manera que los niveles piezométricos sean estables pero debajo de la cota de descarga de los manantiales. La metodología propuesta para obtener el RP del acuífero y las estrategias de gestión diseñadas tienen un interés global. Esta metodología es especialmente adecuada para la gestión de acuíferos carbonáticos, muy abundantes en regiones áridas y semiáridas.
摘要
提出了确定更新期的方法步骤,这个方法步骤展示了碳酸盐含水层总储存量对补给的比值,并应用在(西班牙南部)超采的中型Becerrero碳酸盐含水层。为此,对地质和地表以下的资料(时间域电磁探测和钻孔录井)进行整合,构建了含水层三维地质模型。通过分析73个岩石样品估算了相互连通的孔隙度。三维几何模型可以对具有承压或非承压性质的含水层每个部分进行定量。根据总储存能力(179 · 106–514 · 106 m3)和现有的含水层补给估算量(4.8 · 106–6.4 · 106 m3/year),获取了37到106年之间的更新期。由于更新期,建议开采量稍微低于系统的补给量,以便使测压水位保持稳定,但低于通过自然条件下泉产生的排泄水头。提出的获取含水层更新期的方法和相应设计的管理战略具有很广的意义,特别是对碳酸盐含水层而言,因为碳酸盐含水层在干旱和半干旱地区很丰富。
Resumo
Propõe-se um procedimento metodológico para a determinação do período de renovação (PR), que exprime o rácio do armazenamento total com a recarga em aquíferos carbonatados, que foi aplicado ao aquífero carbonatado de moderada dimensão sobre-explorado de Becerrero (sul de Espanha). Para este fim foram integrados dados geológicos e de subsuperfície (sondagens eletromagnéticas no domínio do tempo e diagrafias de sondagens) para construir um modelo geológico tridimensional (3D) do aquífero. A porosidade interconectada foi estimada através da análise de 73 amostras de rocha. O modelo geométrico 3D resultante tornou possível quantificar as frações do aquífero que têm um comportamento confinado e não confinado. Com base na capacidade de armazenamento total (179 · 106–514 · 106 m3) e na estima disponível da recarga do aquífero (4.8 · 106–6.4 · 106 m3/ano), foi obtida um PR entre 37 e 106 anos. Tendo em atenção o PR, recomendou-se uma taxa de exploração ligeiramente inferior à recarga média do sistema, de tal forma que o nível piezométrico possa ser estável mas inferior à cota de descarga que se produz através de nascentes em condições naturais. A metodologia proposta para a obtenção do PR de um aquífero e as estratégias de gestão que dela resultam são de interesse geral, especialmente para os aquíferos carbonatados, que são abundantes em regiões áridas e semi-áridas.









Similar content being viewed by others
References
Ahr WM (2008) Geology of carbonate reservoirs: the identification, description, and characterization of hydrocarbon reservoirs in carbonate rocks. Wiley, Hoboken, NJ, 286 pp
Al-Eryani M, Appelgren B, Foster S (2006) Social and economic dimensions of non-renewable resources. In: Non-renewable groundwater resources: a guide book on socially-sustainable management for water-policy markers, Foster S, Loucks DP (eds) IHP-VI, Series on Groundwater no. 10, UNESCO, Paris, pp 25–34
Andreo B, Vías J, Durán JJ, Jiménez P, López-Geta JA, Carrasco F (2008) Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeol J 16:911–925
Bachu S (2008) Comparison between methodologies recommended for estimation of CO2 storage capacity in geological media. Carbon Sequestration Leadership Forum (CLSF) and USDOE Capacity and Fairways, Washington, DC, 17 pp
Borczak S, Motyka J, Pulido-Bosch A (1990) The hydrogeological properties of the matrix of the chalk in the Lublin coal basin (southeast Poland). Hydrol Sci J 35:523–534
Calcagno PJP, Chilès G, Courrioux Guillen A (2008) Geological modelling from field data and geological knowledge Part I. Modelling method coupling 3-D potentialfield interpolation and geological rules. Phys Earth Planet Inter 171:147–157
Eisinger C, Jensen J (2011) Reservoir characterization for CO2 sequestration: assessing the potential of the Devonian Carbonate Nisku formation of central Alberta. Oil Gas Sci Technol 66(1):47–65
Eriksson E, Khunakasem V (1969) Chloride concentrations in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. J Hydrol 7:178–179
Faurescu I, Feru A, Varlam C, Faurescu D, Vagner I, Cuna S, Cosma C (2011) Use of C-14 and environmental isotopes to estimate aquifer recharge conditions. Rom J Phys 56(1–2):250–256
Ford DC, Williams P (2007) Karst geomorphology and hydrology. Wiley, Chichester, UK, 576
Gill B, Cherry D, Adelana M, Cheng X, Reid M (2011) Using three-dimensional geological mapping methods to inform sustainable groundwater development in a volcanic landscape, Victoria, Australia. Hydrogeol J 19:1349–1365
Guillen A, Calcagno P, Courrioux G, Joly A, Ledru P (2008) Geological modeling from field data and geological knowledge: part II. Modelling validation using gravity and magnetic data inversion. Phys Earth Planet Inter 171:158–169
Hargreaves GH (1994) Defining and using reference evapotranspiration. J Irrig Drain Eng 120:1132–1139
Herrmann R, Pierce M, Burgess K, Priestley A (2004) Integrated aquifer characterization and numerical simulation for aquifer recharge and storage at Marco Lakes, Florida. Hydrol Sci Pract 21st Century 1:276–283
La Salle CL, Marlin C, Leduc C, Taupin JD, Massauh M, Favreau G (2001) Renewal rate estimation of groundwater based on radioactive tracers (H-3, C-14) in an unconfined aquifer in a semi-arid area, Lullemeden Basin, Niger. J Hydrol 254(1–4):145–156
Lambán LJ, Martos S, Rodríguez-Rodríguez M, Rubio JC (2011) Applications of the groundwater sustainability indicators to the carbonate aquifer of the Sierra de Becerrero (southern Spain). Environ Earth Sci 64:1835–1848
Leduc C, Sabljak S, Taupin ID, Marlin C, Favreau G (2000) Recharge of the Quaternary water table in the northwestern Lake Chad basin (southeastern Niger) estimated from isotopes. C R Acad Sci, Serie 11 F 330(5):355–361
Loáciga H (2008) Aquifer storage capacity and maximum annual yield from long-term aquifer fluxes. Hydrogeol J 16:399–403
Lowry CS, Anderson MP (2006) An assessment of aquifers storage recovery using ground water flow models. Ground Water 44:661–667
MacInnes S, Raymond M (2001) STEMINV Documentation: smooth-model TEM inversion, version 3.00. Zonge Eng. and Res., Tucson, AZ
Margat J, Thauvin JP (1989) Las reservas de agua subterránea: nociones esenciales y formas de utilizarlas [Groundwater storage reserves: basic management strategy]. In: Pulido-Bosch A, Castillo A, Padilla A (eds) La sobreexplotación de acuíferos. Instituto Geológico y Minero de España, Almería, Spain, pp 593–603
Margat J, Foster S, Droubi A (2006) Concept and importance of non-renewable resources. In: Foster S, Loucks DP (eds) Non-renewable groundwater resources: a guide book on socially-sustainable management for water-policy markers. IHP-VI, Series on Groundwater no. 10, UNESCO, Paris, pp 13–24
Martos-Rosillo S (2008) Investigación hidrogeológica orientada a la gestión racional de acuíferos carbonáticos sometidos a un uso intensivo del agua subterránea. El caso de la Sierra de Estepa (Sevilla) [Hydrogeology study of overexploited carbonate aquifers to provide proper management strategies, with the example of Sierra de Estepa, Seville]. PhD Thesis, University of Granada, Spain, 539 pp
Martos-Rosillo S, Rodríguez-Rodríguez M, Moral F, Cruz-Sanjulián JJ, Rubio JC (2009) Analysis of groundwater mining in two carbonate aquifers in Sierra de Estepa (SE Spain) based on hydrodynamic and hydrochemical data. Hydrogeol J 17:1617–1627
Martos-Rosillo S, Rodríguez-Rodríguez M, Pedrera A, Cruz-Sanjulián J, Rubio JC (2013) Quantifying the groundwater recharge in semiarid carbonate aquifers with an intensive use: the Estepa range aquifers (Seville, South of Spain). Environ Earth Sci. doi:10.1007/s12665-013-2288-0
Milly PCD (1994) Climate, soil water storage, and the average annual water balance. Water Resour Res 30(7):2143–2156
Motyka J (1998) A conceptual model of hydraulic networks in carbonate rocks, illustrated by example from Poland. Hydrogeol J 6:469–482
Motyka J, Pulido-Bosch A, Borczak S, Gisbert J (1998) Matrix hydrogeological properties of Devonian carbonate rocks of Olkusz (southern Poland). J Hydrol 211:140–150
Nelson RA (2001) Geologic analysis of naturally fractured reservoirs, 2nd edn. Elsevier, Houston, TX, 332 pp
Ortiz P, Mayoral E, Guerrero MA, Galán E (1994) La piedra caliza de la Sierra de Estepa (Sevilla): caracterización y propiedades [The limestone of the Estepa Range (Sevilla): characterization and properties]. Bol Soc Española Mineralog 17:37–38
Pedrera A, Marin-Lechado C, Martos-Rosillo S, Roldán-García FJ (2012) Curved-fold and thrust accretion during the extrusion of a synorogenic viscous allochthonous sheet: the Estepa Range (External Zones, Western Betic Cordillera, Spain). Tectonics 31, TC4013. doi:10.1029/2012TC003119
Pulido-Bosch A, Motyka J, Pulido-Leboeuf P, Borczak S (2004) Matrix hydrodynamic properties of carbonate rocks from the Betic Cordillera (Spain). Hydrol Process 2893–2906
Robins NS, Rutter HK, Dumpleton S, Peach DW (2004) The role of 3D visualisations as an analytical tool preparatory to numerical modelling. J Hydrol 301:287–295
Ross M, Parent M, Lefebvre R (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeol J 13:690–707
Ruiz-Constán A, Pedrera A, Galindo-Zaldívar J, Pous J, Arzate J, Roldán-García FJ, Marin-Lechado C, Anahnah F (2012) Constraints on the frontal crustal structure of a continental collision from an integrated geophysical research: the central-western Betic Cordillera (SW Spain). Geochem Geophys Geosyst 13, Q08012. doi:10.1029/2012GC004153
Shi X, Dong W, Ling M, Zhang Y (2012) Evaluation of groundwater renewability in the llenan Plains, China. Geochem J 46:107–115
Takounjou AF, Ngoupayou JRN, Riotte J, Takem GE, Mafany G, Marechal JC, Ekodeck GE (2011) Estimation of groundwater recharge of shallow aquifer on humid environment in Yaounde, Cameroon using hybrid water-fluctuation and hydrochemistry methods. Environ Earth Sci 64:107–118
Tosaki Y, Tase N, Sasa K, Takahashi T, Nagashima Y (2012) Estimation of groundwater residence time using the 36Cl bomb pulse. Groundwater 49(6):891–902
UNESCO (1979) Map of the world distribution of arid regions. UNESCO, Paris, 54 pp
Vacher HL, Hutchings WC, Budd DA (2006) Metaphors and models: the ASR bubble in the Floridan Aquifer. Ground Water 44:661–667
White WB (1999) Conceptual models for karstic aquifers. In: Palmer AN, Palmer MV, Sasowsky LD (eds) Karst modelling. KWI Spec. Publ. 5, Karst Waters Institute, Leesburg, VA, pp 158–162
Worthington SRH (1999) A comprehensive strategy for understanding flow in carbonate aquifers. In: Palmer AN, Palmer MV, Sasowsky LD (eds) Karst modelling. KWI Spec. Publ. 5, Karst Waters Institute, Leesburg, VA, pp 30–37
Worthington SHR (2007) Ground-water residence times in unconfined carbonate aquifers. J Cave Karst Stud 69:94–102
Worthington SRH, Davies GJ, Ford DC (2000) Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. In: Wicks CM, Sasowsky ID (eds) Groundwater flow and contaminant transport in carbonate aquifers. Taylor and Francis, London, pp 113–128
Wu Q, Xu H, Zhon W (2008) Development of a 3D GIS and its applications to karst areas. Environ Geol 54:1037–1045
Zuber A, Motyka J (1998) Hydraulic parameters and solute velocities in triple-porosity karstic-fissured-porous carbonate aquifers: case studies in southern Poland. Environ Geol 34:243–250
Acknowledgements
This work was financed through projects TOPO-IBERIA CONSOLIDER-INGENIO (CSD2006–00041), CGL2010–21048, CGL-2008-03474-E, CGL-2010-15498, CGL-2010-21048 and the Junta de Andalucía group RNM148 and RMN123. Thanks to Jean Sanders who revised the English, and three anonymous reviewers are also kindly thanked for their attentive reading and constructive comments. Additionally, we would also like to thank Sue Duncan for her thoughtful technical editorial advice.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Martos-Rosillo, S., Marín-Lechado, C., Pedrera, A. et al. Methodology to evaluate the renewal period of carbonate aquifers: a key tool for their management in arid and semiarid regions, with the example of Becerrero aquifer, Spain. Hydrogeol J 22, 679–689 (2014). https://doi.org/10.1007/s10040-013-1086-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-013-1086-9