Post-processing coding artefacts for JPEG documents | International Journal on Document Analysis and Recognition (IJDAR) Skip to main content
Log in

Post-processing coding artefacts for JPEG documents

  • Original Paper
  • Published:
International Journal on Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

Coding artefacts, including ringing and blocking artefacts, are often introduced when document images are compressed using the JPEG standard. These artefacts severely impact visual perception of the image content. Although a number of methods have been presented to deal with coding artefacts, most of them are dedicated to natural images; few works have investigated to work on document content. The current work is an attempt to fill this lack. In contrast to all the approaches taken by previous works, we propose to post-process the coding artefacts by estimating the quantization noise, which is not available on the decoder’s side. The estimated noise is then used to reconstruct the image with better quality. A number of experiments were conducted to show the efficiency of the proposed method in comparison with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The indexes are removed for simplification.

  2. https://www.nlm.nih.gov/.

  3. Windows 7 (64-bit), Intel Core i7-4600U (2.1 GHz), 16 GB RAM.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  2. Alaei, A., Delalandre, M., Girard, N.: Logo detection using painting based representation and probability features. In: International Conference on Document Analysis and Recognition (ICDAR 2013), pp. 1235–1239 (2013)

  3. Aung, A., Ng, B.P., Shwe, C.T.: A new transform for document image compression. In: 2009 7th International Conference on Information, Communications and Signal Processing (ICICS), pp. 1–5 (2009)

  4. Bottou, L., Haffner, P., Howard, P.G., Simard, P., Bengio, Y., LeCun, Y.: High quality document image compression with ’DjVu’. J. Electron. Imaging 7(3), 410–425 (1998)

    Article  Google Scholar 

  5. Brandão, T., Queluz, M.P.: No-reference image quality assessment based on DCT domain statistics. Signal Process. 88(4), 822–833 (2008)

    Article  MATH  Google Scholar 

  6. Bredies, K., Holler, M.: A total variation-based JPEG decompression model. SIAM J. Sci. Comput. 5(1), 366–393 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Chang, H., Ng, M., Zeng, T.: Reducing artifact in JPEG decompression via a learned dictionary. IEEE Trans. Signal Process. 62(3), 718–728 (2013)

    Article  MathSciNet  Google Scholar 

  10. Darwiche, M., Pham, T.A., Delalandre, M.: Comparison of JPEG’s competitors for document images. In: 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA 2015), pp. 487–493 (2015)

  11. de Queiroz, R.: Processing JPEG-compressed images and documents. IEEE Trans. Image Process. 8(12), 1661–1672 (1998)

    Article  Google Scholar 

  12. de Franca Pereira e Silva, G., Lins, R.D.: Assessing the OCR degradation in the generation of JPEG, PNG, and TIFF files from Adobe PDF. In: ITS 2010 IEEE-SBrT International Telecommunications Symposium (2010)

  13. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  14. Jung, C., Jiao, L., Qi, H., Sun, T.: Image deblocking via sparse representation. Signal Process. Image Commun. 27(6), 663–677 (2012)

    Article  Google Scholar 

  15. Kartalov, T., Ivanovski, Z., Panovski, L., Karam, L.: An adaptive POCS algorithm for compression artifacts removal. In: 9th International Symposium on Signal Processing and Its Applications, 2007. ISSPA 2007, pp. 1–4 (2007)

  16. Lam, E.Y.: Compound document compression with model-based biased reconstruction. J. Electron. Imaging 13(1), 191–197 (2004)

    Article  Google Scholar 

  17. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9(1), 62–66 (1979)

    Article  Google Scholar 

  18. Oztan, B., Malik, A., Fan, Z., Eschbach, R.: Removal of artifacts from JPEG compressed document images. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6493, pp. 1–9 (2007)

  19. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Conference Record of the 27th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 40–44 (1993)

  20. Pham, T.A., Delalandre, M.: Effective decompression of JPEG document images. IEEE Trans. Image Process. 25(6), 3655–3670 (2016)

    Article  MathSciNet  Google Scholar 

  21. Prost, R., Ding, Y., Baskurt, A.: JPEG dequantization array for regularized decompression. IEEE Trans. Image Process. 6(6), 883–888 (1997)

    Article  Google Scholar 

  22. Samadani, R.: Characterizing and estimating block DCT image compression quantization parameters, pp. 1230–1234 (2005)

  23. Samadani, R., Sundararajan, A., Said, A.: Deringing and deblocking DCT compression artifacts with efficient shifted transforms, pp. 1799–1802 (2004)

  24. Saraswat, N., Ghosh, H.: A study on size optimization of scanned textual documents. Lect. Notes Comput. Sci. 9431, 75–86 (2016)

    Article  Google Scholar 

  25. Savakis, A.E.: Evaluation of lossless compression methods for gray scale document images. In: Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101), vol. 1, pp. 136–139 (2000)

  26. Wallace, G.K.: The JPEG still picture compression standard. Commun. ACM 34(4), 30–44 (1991)

    Article  Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wong, T., Bouman, C., Pollak, I., Fan, Z.: A document image model and estimation algorithm for optimized JPEG decompression. IEEE Trans. Image Process. 18(11), 2518–2535 (2009)

    Article  MathSciNet  Google Scholar 

  29. Yang, S., Hu, Y.H., Tull, D.: Blocking effect removal using robust statistics and line process. In: 1999 IEEE 3rd Workshop on Multimedia Signal Processing, pp. 315–320 (1999)

  30. Yang, Y., Galatsanos, N., Katsaggelos, A.: Projection-based spatially adaptive reconstruction of block-transform compressed images. IEEE Trans. Image Process. 4(7), 896–908 (1995)

    Article  Google Scholar 

  31. Zhang, P., Wang, S., Wang, R.: Reducing frequency-domain artifacts of binary image due to coarse sampling by repeated interpolation and smoothing of radon projections. J. Visual Commun. Image Represent. 23, 697–704 (2012)

    Article  Google Scholar 

  32. Zhang, X., Xiong, R., Fan, X., Ma, S., Gao, W.: Compression artifact reduction by overlapped-block transform coefficient estimation with block similarity. IEEE Trans. Image Process. 22(12), 4613–4626 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zou, J.J., Yan, H.: A deblocking method for BDCT compressed images based on adaptive projections. IEEE Trans. Circuits Syst. Video Technol. 15(3), 430–435 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to The-Anh Pham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, TA., Delalandre, M. Post-processing coding artefacts for JPEG documents. IJDAR 20, 189–200 (2017). https://doi.org/10.1007/s10032-017-0288-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-017-0288-4

Keywords

Navigation