Robust identification of pneumatic servo actuators in the real situations | Forschung im Ingenieurwesen Skip to main content
Log in

Robust identification of pneumatic servo actuators in the real situations

Robuste Identifikation von pneumatischen Servo-Aktuatoren in der realen Situationen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Intensive research in the field of mathematical modelling of the pneumatic cylinder has shown that its mathematical model is nonlinear and that a lot of important details cannot be included in the model. Selection of the model and the identification method have been conditioned by the following facts:

  1. (a)

    The nonlinear model of the system can be approximated by a linear model with time-variant parameters.

  2. (b)

    There is the influence of the combination of heat coefficient, unknown discharge coefficient and change of temperature on the pneumatic cylinder model. Therefore it is assumed that the parameters of the pneumatic cylinder are random (stochastic parameters).

  3. (c)

    In practical conditions, observations have a non-Gaussian distribution.

Due to the abovementioned reasons, it is assumed that the pneumatic cylinder model is a linear stochastic model with variable parameters. The Masreliez-Martin filter (robust Kalman filter) was used for identification of parameters of the model. For the purpose of increasing the practical value of the filter, the following two heuristic modifications were performed:

  1. (1)

    It was adopted that T(k)=1 holds for the scalar transformation of residuals.

  2. (2)

    Fisher information was approximated by a derivative of the Huber’s function.

The proposed modifications were confirmed through intensive simulations. In order to provide persistent excitation, the autocovariance function “1/f” of the signal was used. The behaviour of the new approach to identification of the pneumatic cylinder is illustrated by simulations.

Zusammenfassung

Intensive Forschung auf dem Gebiet der mathematischen Modellierung des pneumatischen Zylinders hat gezeigt, dass sein mathematisches Modell nichtlinear ist und dass viele wichtige Details nicht in das Modell einbezogen werden können. Die Auswahl des Modells und die Art der Identifikation werden durch folgende Tatsachen bedingt:

  1. (a)

    Das nichtlineare Modell des Systems kann durch ein lineares Modell mit zeitvarianten Parametern angenähert werden.

  2. (b)

    Es besteht ein Einfluss der Kombination von Wärmedurchgangs-Koeffizient, unbekanntem Durchflusskoeffizienten und Änderungen der Temperatur auf das pneumatischen Zylinder-Modell. Es wird daher angenommen, dass die Parameter des pneumatischen Zylinders zufälligen Charakters sind.

  3. (c)

    Unter praktischen Bedingungen haben die Beobachtungsergebnisse eine nicht-Gaußsche Verteilung.

Aufgrund der vorgenannten Gründe wird davon ausgegangen, dass das Pneumatikzylinder Modell ein lineares, stochastisches Modell mit variablen Parametern sein muss. Der Masreliez-Martin-Filter (robust Kalman-Filter) wurde für die Identifizierung von Parametern des Modells verwendet. Zur Erhöhung des praktischen Werts des Filters, wurden die beiden folgenden heuristischen Modifikationen durchgeführt:

  1. (1)

    Es wird angenommen, dass T(k)=1 für das skalare Transformation der Residuen hält.

  2. (2)

    Die Fisher-Information wird durch ein Derivat des Hubers Funktion approximiert.

Die vorgeschlagenen Änderungen werden durch intensive Simulationen bestätigt. Um für eine anhaltende Erregung zu sorgen, wird die Autokovarianzfunktion “1/f” des Signals verwendet. Das Verhalten des neuen Ansatzes zur Identifikation des pneumatischen Zylinders wird durch Simulationen aufgezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P S :

supply pressure

P i :

pressure in the chamber i=a,b

P o :

outer absolute pressure

m :

total mass of the piston and the load

β e :

nonlinear viscous friction coefficient

k e :

load spring gradient

F ext :

load force disturbance on the piston

F f :

friction forces

A i :

effective area of the piston

T S :

supply temperature

R :

the universal gas constant

\(\dot{m}_{l}\) :

leakage mass flow rate between the cylinder chambers

\(\dot{m}_{i}\) :

mass flow rates through the orifice i=a,b

C d (t):

valve discharge coefficient

α(t):

heat coefficient

β(t):

uncertain bound parameter

τ(t):

variation of the temperature

W :

port width

y :

displacement of the piston

y(k):

discrete scalar observations of the piston displacement

x(k):

discrete time n×1 state vector

u(k):

input signal

F(k):

n×n state transition matrix

H(k):

n observation matrix

w(k):

process noise

v(k):

measurement noise

T(k):

a linear transformation

W(k):

covariance for process noise w(k)

P(k|k−1):

a priori covariance matrix

P(k|k):

a posteriori covariance matrix

\(E_{P_{\varepsilon}} \{ \cdot\}\) :

expectation with respect to the least favourable pdf

I(p):

Fisher information for the least favourable pdf

ε :

degree of contamination

ψ p [⋅]:

vector influence function

φ(k):

n regression vector

θ(k):

n×1true parameter vector

\(\bar{\theta}\) :

mean value of true parameter vector

Σ θ :

covariance matrix of true parameter vector

\(\hat{\theta} (k)\) :

estimation of true parameter vector

C :

a priori known non-singular matrix

\(\hat{y}(k)\) :

adjustable predictor

a i ,b j :

system parameters (i=1,…,n;j=1,…,m)

\(r_{k}^{d}, \hat{r}_{k}\) :

desired and non central autocovariances of excitation signal

s t :

excitation signal

ϕ 1/f :

spectrum of bandlimited noise

\(\omega, \underline{\omega} ,\bar{\omega}\) :

frequency and its lower and upper limits

a :

head side of the piston

b :

rod side of the piston

ARX:

autoregressive with exogenous input

ARMA:

autoregressive moving average

ARMAX:

autoregressive moving average with exogenous input

RLS:

recursive least square

OE:

output error

MSE:

mean square error

SISO:

single input/single output

pdf:

probability density function

References

  1. Pu J, Moore PR, Wong CB (2000) Smart components-based servo pneumatic actuation systems. Microprocess Microsyst 24:113–119

    Article  Google Scholar 

  2. Shearer JJ (1956) The study of pneumatic process in the continuous control of motion with compressed air. ASME Trans 233–242

  3. Anderson BW (2001) The Analysis and Design of Pneumatic System. Krieger, Melbourne

    Google Scholar 

  4. Wang J, Wang DJD, Moore PR, Pu J (2001) Modelling study, analysis and robust servo control of pneumatic cylinder actuator systems. IEE Proc, Control Theory Appl 148:35–42

    Article  Google Scholar 

  5. Wang J, Pu J, Moore P (1999) A practical control strategy for servo-pneumatic actuator systems. Control Eng Pract 7(12):1483–1488

    Article  Google Scholar 

  6. Wang J, Pu J, Moore P (1999) Accurate position control of servo pneumatic actuator systems: an application to food packaging. Control Eng Pract 7(6):699–706

    Article  Google Scholar 

  7. Richard E, Scavarda S (1996) Comparison between linear and nonlinear control of an electropneumatic servodrive. J Dyn Syst Meas Control 118(2):445–452. doi:10.1115/1.2802310

    Article  Google Scholar 

  8. Keller H, Isermann R (1993) Model-based nonlinear adaptive control of a pneumatic actuator. Control Eng Pract 1(3):505–511

    Article  Google Scholar 

  9. Östring M, Gunnarson S, Norrlöf M (2003) Closed-loop identification of an industrial robot containing flexibilities. Control Eng Pract 11(3):291–300

    Article  Google Scholar 

  10. Johansson R, Robertsson A, Nilsson K, Verhaegen M (2000) State-space system identification of robot manipulator dynamics. Mechatronics 10(3):403–418

    Article  Google Scholar 

  11. AR Fraser, Daniel RW (1991) Perturbation Techniques for Flexible Manipulators. Kluwer Academic, Boston

    Google Scholar 

  12. Canudas C, Siciliano B, Bastin G (1996) Theory of Robot Control. Springer, New York

    MATH  Google Scholar 

  13. Tutunji T, Molhem M, Turki E (2007) Mechatronic systems identification using an impulse response recursive algorithm. Simul Model Pract Theory 15(8):970–988

    Article  Google Scholar 

  14. Shih MC, Tseng S (1995) Identification and position control of a servo pneumatic cylinder. Control Eng Pract 3(9): 1285–1290

    Article  Google Scholar 

  15. Khayati K, Bigras P, Dessaint LA (2008) Force control loop affected by bounded uncertainties and unbounded inputs for pneumatic actuator systems. J Dyn Syst Meas Control 130(1):1–9

    Article  Google Scholar 

  16. Rodriguez MT, Banks SP (2010) Linear, time-varying approximations to nonlinear dynamical systems: with applications in control and optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Barnet V, Lewis T (1994) Outliers in statistical data, 3rd edn. Wiley-Blackwell, New York

    Google Scholar 

  18. Huber PJ (1981) Robust statistics. Wiley, New York

    Book  MATH  Google Scholar 

  19. Blackburn JF, Reethof G, Shearer JL (1960) Fluid power control. The Technology Press/Wiley, New York

    Google Scholar 

  20. Landau ID, Lozano R, M’Saad M (1998) Adaptive control, 1st edn. Springer, Berlin

    Book  Google Scholar 

  21. Masreliez CJ, Martin RD (1977) Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans Autom Control 22(3):361–371

    Article  MathSciNet  MATH  Google Scholar 

  22. Filipovic VZ, Kovacevic BD (1994) On robust AML identification algorithms. Automatica 30(11):1775–1778

    Article  MathSciNet  MATH  Google Scholar 

  23. Rojas R, Welsh J, Goodwin G (2007) A receding horizon algorithm to generate binary signals with a prescribed autocovariance. In: American control conference, pp. 122–127

    Chapter  Google Scholar 

  24. Rojas R, Goodwin G, Welsh JS, Feuer A (2007) Robust optimal experiment design for system identification. Automatica 43:993–1008

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Stojanovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipovic, V., Nedic, N. & Stojanovic, V. Robust identification of pneumatic servo actuators in the real situations. Forsch Ingenieurwes 75, 183–196 (2011). https://doi.org/10.1007/s10010-011-0144-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-011-0144-5

Keywords

Navigation