Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids | Computing and Visualization in Science
Skip to main content

Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids

  • Published:
Computing and Visualization in Science

Abstract

The goal of this paper is to design optimal multilevel solvers for the finite element approximation of second order linear elliptic problems with piecewise constant coefficients on bisection grids. Local multigrid and BPX preconditioners are constructed based on local smoothing only at the newest vertices and their immediate neighbors. The analysis of eigenvalue distributions for these local multilevel preconditioned systems shows that there are only a fixed number of eigenvalues which are deteriorated by the large jump. The remaining eigenvalues are bounded uniformly with respect to the coefficients and the meshsize. Therefore, the resulting preconditioned conjugate gradient algorithm will converge with an asymptotic rate independent of the coefficients and logarithmically with respect to the meshsize. As a result, the overall computational complexity is nearly optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aksoylu, B., Holst, M.: Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44(3), 1005–1025 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aksoylu, B., Graham, I., Klie, H., Scheichl, R.: Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems. Comput. Vis. Sci. 11(4), 319–331 (2008)

    Article  MathSciNet  Google Scholar 

  3. Alcouffe, R.E., Brandt, A., Dendy, J.E., Painter, J.W.: The multi-grid methods for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2, 430–454 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ashby, S.F., Holst, M.J., Manteuffel, T.A., Saylor, P.E.: The role of the inner product in stopping criteria for conjugate gradient iterations. BIT 41(1), 026–052 (2001)

    Article  MathSciNet  Google Scholar 

  5. Axelsson, O.: Iteration number for the conjugate gradient method. Math. Comput. Simul. 61(3–6), 421–435 (2003). MODELLING 2001 (Pilsen)

    Google Scholar 

  6. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  7. Bai, D., Brandt, A.: Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8(2), 109–134 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bank, R.E., Dupont, T., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52, 427–458 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bank, R.E.: Hierarchical bases and the finite element method. Acta Numer. 5, 1–43 (1996)

    Article  MathSciNet  Google Scholar 

  10. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Google Scholar 

  12. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bramble, J.H., Xu, J.: Some estimates for a weighted \({L}^2\) projection. Math. Comput. 56, 463–476 (1991)

    MATH  MathSciNet  Google Scholar 

  14. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  MATH  Google Scholar 

  15. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47(3), 2132–2156 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chan, T.F., Wan, W.L.: Robust multigrid methods for nonsmooth coefficient elliptic linear systems. J. Comput. Appl. Math. 123(1–2), 323–352 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen, L.: iFEM: an integrate finite element methods package in MATLAB. Technical report, University of California at Irvine (2009)

  19. Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. 24(2), 443–462 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen, L.: Short implementation of bisection in MATLAB. In: Jorgensen, P., Shen, X., Shu, C.-W., Yan, N. (eds.) Recent Advances in Computational Sciences—Selected Papers from the International Workshop on Computational Sciences and Its Education, pp. 318–332. World Scientific Pub Co Inc, Singapore (2007)

    Google Scholar 

  21. Chen, L.: Deriving the X-Z Identity from auxiliary space method. In: Yunqing, Huang, Ralf, Kornhuber, Olof, Widlund, Xu, Jinchao (eds.) Domain Decomposition Methods in Science and Engineering XIX, pp. 309–316. Springer, Berlin (2010)

    Google Scholar 

  22. Chen, L., Zhang, C.-S.: A coarsening algorithm and multilevel methods on adaptive grids by newest vertex bisection. J. Comput. Math. 28(6), 767–789 (2010)

    MATH  MathSciNet  Google Scholar 

  23. Chen, L., Nochetto, R.H., Xu, J.: Optimal multilevel methods for graded bisection grids. Numer. Math. 120(1), 1–34 (2011)

    Article  MathSciNet  Google Scholar 

  24. Coomer, R.K., Graham, I.G.: Massively parallel methods for semiconductor device modelling. Computing 56(1), 1–27 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dryja, M., Sarkis, M.V., Widlund, O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3), 313–348 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  27. Graham, I.G., Hagger, M.J.: Unstructured additive schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 20, 2041–2066 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Graham, I., Lechner, P., Scheichl, R.: Domain decomposition for multiscale pdes. Numer. Math. 106(4), 589–626 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Heise, B., Kuhn, M.: Parallel solvers for linear and nonlinear exterior magnetic field problems based upon coupled FE/BE formulations. Computing, 56(3), 237–258 (1996). International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994)

    Google Scholar 

  30. Hiptmair, R., Zheng, W.: Local multigrid in H (curl). J. Comput. Math. 27(5), 573–603 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kees, C.E., Miller, C.T., Jenkins, E.W., Kelley, C.T.: Versatile two-level Schwarz preconditioners for multiphase flow. Comput. Geosci. 7(2), 91–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kossaczky, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Meza, J., Tuminaro, R.: A multigrid preconditioner for the semiconductor equations. SIAM J. Sci. Comput. 17, 118–132 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. (TOMS) Arch. 15(4), 326–347 (1989)

    Article  MATH  Google Scholar 

  35. Mitchell, W.F.: Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comput. 13, 146–167 (1992)

    Article  MATH  Google Scholar 

  36. Nochetto, R., Siebert, K., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, 2009. Dedicated to Wolfgang Dahmen on the Occasion of His 60th Birthday

  37. Oswald, P.: Multilevel Finite Element Approximation. Theory and Applications. Teubner Skripten zur Numerik. Teubner Verlag, Stuttgart (1994)

  38. Oswald, P.: On the robustness of the BPX-preconditioner with respect to jumps in the coefficients. Math. Comput. 68, 633–650 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  41. Sarkis, M.: Nonstandard coarse spaces and schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements. Numer. Math. 77(3), 383–406 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. Scheichl, R., Vainikko, E.: Additive schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients. Computing 80(4), 319–343 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Scott, R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  44. Stevenson, R.: Stable three-point wavelet bases on general meshes. Numer. Math. 80(1), 131–158 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  45. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    Google Scholar 

  46. Vohralık, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. Technical Report Preprint R08009, Laboratoire Jacques-Louis Lions (2008)

  47. Vuik, C., Segal, A., Meijerink, J.A.: An efficient preconditioned cg method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput. Phys. 152(1), 385–403 (1999)

    Article  MATH  Google Scholar 

  48. Wang, J., Xie, R.: Domain decomposition for elliptic problems with large jumps in coefficients. In: Proceedings of Conference on Scientific and Engineering Computing, pp. 74–86. National Defense Industry Press (1994)

  49. Wang, J.: New convergence estimates for multilevel algorithms for finite-element approximations. J. Comput. Appl. Math. 50, 593–604 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  50. Wang, Z., Wang, C., Chen, K.: Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94, 40–50 (2001)

    Article  Google Scholar 

  51. Widlund, O.B.: Some Schwarz methods for symmetric and nonsymmetric elliptic problems. In: Keyes, D.E., Chan, T.F., Meurant, G.A., Scroggs, J.S., Voigt, R.G. (eds.) Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 19–36. SIAM, Philadelphia (1992)

    Google Scholar 

  52. Xu, J., Chen, L., Nochetto, R.: Optimal multilevel methods for H (grad), H (curl), and H (div) systems on graded and unstructured grids. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 599–659. Springer, Berlin (2009)

  53. Xu, J.: Counter examples concerning a weighted \({L}^{2}\) projection. Math. Comput. 57, 563–568 (1991)

    MATH  Google Scholar 

  54. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  55. Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  56. Xu, J.: An introduction to multigrid convergence theory. In: Chan, R., Chan, T., Golub, G. (eds.) Iterative Methods in Scientific Computing. Springer, Berlin (1997)

    Google Scholar 

  57. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15, 573–597 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  58. Xu, J., Zhu, Y.: Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Model. Methods Appl. Sci. 18(1), 77–105 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  59. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer., pp. 285–326 (1993)

  60. Yserentant, H.: Two preconditioners based on the multi-level splitting of finite element spaces. Numer. Math. 58, 163–184 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  61. Zhu, Y.: Domain decomposition preconditioners for elliptic equations with jump coefficients. Numer. Linear Algebra Appl. 15(2–3), 271–289 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author is supported in part by NSF Grant DMS-0811272, NSF Grant DMS-1115961, and in part by Department of Energy prime award #DE-SC0006903. The second and fourth authors were supported in part by NSF Awards 1065972 and 1217175, by DTRA Award HDTRA-09-1-0036, and by subcontract to DOE Award #DE-SC0006903. The third author was supported in part by NSF DMS 1217142 and DOE Award #DE-SC0006903. The fourth author was supported in part by NSF DMS 1319110 and the University Research Committee Grant No. F119 at Idaho State University, Pocatello, Idaho. This work is also partially supported by the Beijing International Center for Mathematical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunrong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Holst, M., Xu, J. et al. Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids. Comput. Visual Sci. 15, 271–289 (2012). https://doi.org/10.1007/s00791-013-0213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-013-0213-4

Keywords