On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes | Finance and Stochastics Skip to main content
Log in

On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Cox–Ingersoll–Ross (CIR) processes are extensively used in state-of-the-art models for the pricing of financial derivatives. The prices of financial derivatives are very often approximately computed by means of explicit or implicit Euler- or Milstein-type discretization methods based on equidistant evaluations of the driving noise processes. In this article, we study the strong convergence speeds of all such discretization methods. More specifically, the main result of this article reveals that each such discretization method achieves at most a strong convergence order of \(\delta /2\), where \(0<\delta <2\) is the dimension of the squared Bessel process associated to the considered CIR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11, 355–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Stat. Probab. Lett. 83, 602–607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM Probab. Stat. 12, 1–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  5. Bossy, M., Olivero, H.: Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs. Bernoulli 24, 1995–2042 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chassagneux, J.F., Jacquier, A., Mihaylov, I.: An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients. SIAM J. Financ. Math. 7, 993–1021 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox, J.C., Ingersoll, J.E. Jr., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cozma, A., Reisinger, C.: Exponential integrability properties of Euler discretization schemes for the Cox–Ingersoll–Ross process. Discrete Contin. Dyn. Syst., Ser. B 21, 3359–3377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cozma, A., Reisinger, C.: Strong order 1/2 convergence of full truncation Euler approximations to the Cox–Ingersoll–Ross process. Working paper (2017). Available online at arXiv:1704.07321

  10. Deelstra, G., Delbaen, F.: Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stoch. Models Data Anal. 14, 77–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dereich, S., Neuenkirch, A., An, S.L.: Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process. Proc. R. Soc. A, Math. Phys. Eng. Sci. 468, 1105–1115 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerencsér, M., Jentzen, A., Salimova, D.: On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions. Proc. R. Soc. A, Math. Phys. Eng. Sci. 473, 20170104 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Göing-Jaeschke, A., Yor, M.: A survey and some generalizations of Bessel processes. Bernoulli 9, 313–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gyöngy, I.: A note on Euler’s approximations. Potential Anal. 8, 205–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gyöngy, I., Rásonyi, M.: A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl. 121, 2189–2200 (2011)

    Article  MATH  Google Scholar 

  16. Hairer, M., Hutzenthaler, M., Jentzen, A.: Loss of regularity for Kolmogorov equations. Ann. Probab. 43, 468–527 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hefter, M., Herzwurm, A.: Optimal strong approximation of the one-dimensional squared Bessel process. Commun. Math. Sci. 15, 2121–2141 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hefter, M., Herzwurm, A.: Strong convergence rates for Cox–Ingersoll–Ross processes—full parameter range. J. Math. Anal. Appl. 459, 1079–1101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hefter, M., Herzwurm, A., Müller-Gronbach, T.: Lower error bounds for strong approximation of scalar SDEs with non-Lipschitzian coefficients. Ann. Appl. Probab. (2017). https://doi.org/10.1214/18-AAP1411. Available online at. https://arxiv.org/abs/1710.08707

    Google Scholar 

  20. Higham, D., Mao, X.: Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comput. Finance 8(3), 35–61 (2005)

    Article  Google Scholar 

  21. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hofmann, N., Müller-Gronbach, T., Ritter, K.: The optimal discretization of stochastic differential equations. J. Complex. 17(1), 117–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, Y.: Semi-implicit Euler–Maruyama scheme for stiff stochastic equations. In: Körezlioğlu, H., et al. (eds.) Stochastic Analysis and Related Topics, V. Progr. Probab., vol. 38, pp. 183–202. Birkhäuser Boston, Boston (1996)

    Chapter  Google Scholar 

  24. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236(1112), 1–99 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22, 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hutzenthaler, M., Jentzen, A., Noll, M.: Strong convergence rates and temporal regularity for Cox–Ingersoll–Ross processes and Bessel processes with accessible boundaries. Working paper (2014). Available online at arXiv:1403.6385

  27. Jentzen, A., Müller-Gronbach, T., Yaroslavtseva, L.: On stochastic differential equations with arbitrary slow convergence rates for strong approximation. Commun. Math. Sci. 14, 1477–1500 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  29. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  30. Kelly, C., Lord, G.J.: Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38(3), 1523–1549 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mao, X.: Stochastic Differential Equations and Their Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  32. Milstein, G.N., Schoenmakers, J.: Uniform approximation of the Cox–Ingersoll–Ross process. Adv. Appl. Probab. 47, 1132–1156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Müller-Gronbach, T.: Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab. 14, 1605–1642 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs defined in a domain. Numer. Math. 128, 103–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  36. Sabanis, S.: A note on tamed Euler approximations. Electron. Commun. Probab. 18, 47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sabanis, S.: Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26, 2083–2105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yaroslavtseva, L.: On non-polynomial lower error bounds for adaptive strong approximation of SDEs. J. Complex. 42, 1–18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yaroslavtseva, L., Müller-Gronbach, T.: On sub-polynomial lower error bounds for quadrature of SDEs with bounded smooth coefficients. Stoch. Anal. Appl. 35, 423–451 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Special thanks are due to André Herzwurm for a series of fruitful discussions on this work. This project has been supported through the SNSF-Research project 200021_156603 “Numerical approximations of nonlinear stochastic ordinary and partial differential equations”. We gratefully acknowledge the Institute for Mathematical Research (FIM) at ETH Zurich which provided office space and partially organized the short visit of the first author to ETH Zurich in 2016 when part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Hefter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hefter, M., Jentzen, A. On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes. Finance Stoch 23, 139–172 (2019). https://doi.org/10.1007/s00780-018-0375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-018-0375-5

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation