Abstract
We show that no unbounded profit with bounded risk (NUPBR) implies predictable uniform tightness (P-UT), a boundedness property in the Emery topology introduced by Stricker (Séminaire de Probabilités de Strasbourg XIX, pp. 209–217, 1985). Combining this insight with well-known results of Mémin and Słominski (Séminaire de Probabilités de Strasbourg XXV, pp. 162–177, 1991) leads to a short variant of the proof of the fundamental theorem of asset pricing initially proved by Delbaen and Schachermayer (Math. Ann. 300:463–520, 1994). The results are formulated in the general setting of admissible portfolio wealth processes as laid down by Kabanov (Statistics and Control of Stochastic Processes, pp. 191–203, World Sci. Publ., River Edge, 1997).
Similar content being viewed by others
Notes
In order to show that the separating measure is a local martingale measure, the local boundedness assumption cannot be dropped.
References
Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)
Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. Stoch. Rep. 29, 185–201 (1990)
Delbaen, F.: Representing martingale measures when asset prices are continuous and bounded. Math. Finance 2, 107–130 (1992)
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)
Delbaen, F., Schachermayer, W.: The no-arbitrage property under a change of numéraire. Stoch. Stoch. Rep. 53, 213–226 (1995)
Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)
Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, Berlin (2006)
Emery, M.: Une topologie sur l’espace des semimartingales. In: Emery, M., Yor, M. (eds.) Séminaire de Probabilités, XIII, Univ. Strasbourg, Strasbourg, 1977/78. Lecture Notes in Math., vol. 721, pp. 260–280. Springer, Berlin (1979)
Fernholz, R., Karatzas, I.: Stochastic portfolio theory: an overview. In: Bensoussan, A., et al. (eds.) Handbook of Numerical Analysis, vol. XV, pp. 89–167. North-Holland, Amsterdam (2009). Special Volume: Mathematical Modeling and Numerical Methods in Finance
Gushchin, A.A.: On taking limits under the compensator sign. In: Ibragimov, I.A., et al. (eds.) Probability Theory and Mathematical Statistics, St. Petersburg, 1993, pp. 185–192. Gordon and Breach, Amsterdam (1996)
Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979)
Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981)
Imkeller, P., Perkowski, N.: The existence of dominating local martingale measures. Finance Stoch. 685–717 (2015, this issue). doi:10.1007/s00780-015-0264-0
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003)
Jakubowski, A., Mémin, J., Pagès, G.: Convergence en loi des suites d’intégrales stochastiques sur l’espace \(\mathbf{D}^{1}\) de Skorokhod. Probab. Theory Relat. Fields 81, 111–137 (1989)
Kabanov, Y.M.: On the FTAP of Kreps–Delbaen–Schachermayer. In: Kabanov, Y., Rozovski, B., Shiryaev, A. (eds.) Statistics and Control of Stochastic Processes, Moscow, 1995/1996, pp. 191–203. World Sci. Publ., River Edge (1997)
Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)
Kardaras, C.: A structural characterization of numéraires of convex sets of nonnegative random variables. Positivity 16, 245–253 (2012)
Kardaras, C.: Generalized supermartingale deflators under limited information. Math. Finance 23, 186–197 (2013)
Kardaras, C.: On the closure in the Emery topology of semimartingale wealth-process sets. Ann. Appl. Probab. 23, 1355–1376 (2013)
Kreps, D.M.: Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981)
Kurtz, T.G., Protter, P.: Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19, 1035–1070 (1991)
Kurtz, T.G., Protter, P.E.: Weak convergence of stochastic integrals and differential equations. In: Talay, D., Tubaro, L. (eds.) Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995. Lecture Notes in Math., vol. 1627, pp. 1–41. Springer, Berlin (1996)
Mémin, J.: Espaces de semi martingales et changements de probabilité. Z. Wahrscheinlichkeitstheor. Verw. Geb. 52, 9–39 (1980)
Mémin, J., Słominski, L.: Condition UT et stabilité en loi des solutions d’équations différentielles stochastiques. In: Azéma, J., Yor, M., Meyer, P.-A. (eds.) Séminaire de Probabilités de Strasbourg XXV. Lecture Notes in Math., vol. 1485, pp. 162–177 (1991)
Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)
Meyer, P.-A.: Martingales and stochastic integrals. I. In: Dold, A., Eckmann, B. (eds.) Lecture Notes in Math., vol. 284. Springer, Berlin (1972)
Rokhlin, D.B.: On the existence of an equivalent supermartingale density for a fork-convex family of random processes. Mat. Zametki 87, 594–603 (2010)
Ross, S.A.: A simple approach to the valuation of risky streams. J. Bus. 51, 453–475 (1978)
Schachermayer, W.: Martingale measures for discrete-time processes with infinite horizon. Math. Finance 4, 25–55 (1994)
Schachermayer, W.: Fundamental theorem of asset pricing. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance, pp. 792–801. Wiley, New York (2010)
Stricker, C.: Lois de semimartingales et critères de compacité. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités de Strasbourg XIX. Lecture Notes in Math., vol. 1123, pp. 209–217 (1985)
Stricker, C.: Arbitrage et lois de martingale. Ann. Inst. Henri Poincaré Probab. Stat. 26, 451–460 (1990)
Yan, J.A.: Caractérisation d’une classe d’ensembles convexes de \(L^{1}\) ou \(H^{1}\). In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIV, Paris, 1978/1979. Lecture Notes in Math., vol. 784, pp. 220–222. Springer, Berlin (1980)
Author information
Authors and Affiliations
Corresponding author
Additional information
The second author gratefully acknowledges support from the ETH Foundation. We thank Freddy Delbaen, Aleksandr Gushchin, Yuri Kabanov, Costas Kardaras, Irene Klein, Chong Liu, Walter Schachermayer and Martin Schweizer for fruitful discussions on the topic.
Appendix: The P-UT property
Appendix: The P-UT property
This section is dedicated to state some results related to the P-UT property, which can be found in [25], [15], and [14, Chapter VI.6].
Proposition A.1
Let \((X^{n})_{n \geq0} \) be a sequence of semimartingales satisfying the P-UT property. Then
-
(i)
\((|X^{n}|^{*}_{1})_{n\geq0}\) is bounded in \(L^{0}\);
-
(ii)
\(([X^{n}, X^{n}]_{1})_{n \geq0}\) is bounded in \(L^{0}\).
Proof
See [15, Lemme 1.2] or [25, Lemme 1.3]. □
The following proposition characterizes the P-UT property in terms of the \(L^{0}\)-boundedness of certain parts in the semimartingale decomposition (5.1).
Proposition A.2
Let \((X^{n})_{n \geq0} \) be a sequence of semimartingales and consider the semimartingale decomposition (5.1) for some \(C >0\). Then \((X^{n}) \) satisfies the P-UT property if and only if the following three conditions hold:
-
(i)
The sequence \({(\operatorname{TV}(\check{X}^{n,C})_{1})}_{n \geq 0}\) of total variations of \(\check{X}^{n,C}\) is bounded in \(L^{0}\).
-
(ii)
The sequence \(([M^{n,C}, M^{n,C}]_{1})_{n \geq0}\) is bounded in \(L^{0}\).
-
(iii)
The sequence \({(\operatorname{TV}(B^{n,C})_{1})}_{n \geq0}\) of total variations of \(B^{n,C}\) is bounded in \(L^{0}\).
Proof
See [25, Théorème 1.4] or [14, Theorem VI.6.15]. □
The following theorem builds the basis of Proposition 5.2.
Theorem A.3
Let \((H^{n})_{n \geq0}\) be a sequence of adapted càdlàg processes, and \((X^{n})_{n \geq0} \) a sequence of semimartingales satisfying the P-UT property. If the sequence \((H^{n},X^{n})\) converges uniformly in probability to \((H,X)\), then the stochastic integrals \((H^{n}_{-} \bullet X^{n})\) converge to \((H_{-} \bullet X)\) uniformly in probability as well. In particular, \([X^{n}, X^{n}]_{1} \to[X,X]_{1}\) in probability.
Proof
See [15, Théorème 2.6] or [25, Théorème 1.8, Corollaire 1.9]. □
Rights and permissions
About this article
Cite this article
Cuchiero, C., Teichmann, J. A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing. Finance Stoch 19, 743–761 (2015). https://doi.org/10.1007/s00780-015-0276-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00780-015-0276-9