A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing | Finance and Stochastics
Skip to main content

A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We show that no unbounded profit with bounded risk (NUPBR) implies predictable uniform tightness (P-UT), a boundedness property in the Emery topology introduced by Stricker (Séminaire de Probabilités de Strasbourg XIX, pp. 209–217, 1985). Combining this insight with well-known results of Mémin and Słominski (Séminaire de Probabilités de Strasbourg XXV, pp. 162–177, 1991) leads to a short variant of the proof of the fundamental theorem of asset pricing initially proved by Delbaen and Schachermayer (Math. Ann. 300:463–520, 1994). The results are formulated in the general setting of admissible portfolio wealth processes as laid down by Kabanov (Statistics and Control of Stochastic Processes, pp. 191–203, World Sci. Publ., River Edge, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In order to show that the separating measure is a local martingale measure, the local boundedness assumption cannot be dropped.

References

  1. Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  MATH  Google Scholar 

  2. Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. Stoch. Rep. 29, 185–201 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Delbaen, F.: Representing martingale measures when asset prices are continuous and bounded. Math. Finance 2, 107–130 (1992)

    Article  MATH  Google Scholar 

  4. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delbaen, F., Schachermayer, W.: The no-arbitrage property under a change of numéraire. Stoch. Stoch. Rep. 53, 213–226 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Emery, M.: Une topologie sur l’espace des semimartingales. In: Emery, M., Yor, M. (eds.) Séminaire de Probabilités, XIII, Univ. Strasbourg, Strasbourg, 1977/78. Lecture Notes in Math., vol. 721, pp. 260–280. Springer, Berlin (1979)

    Chapter  Google Scholar 

  9. Fernholz, R., Karatzas, I.: Stochastic portfolio theory: an overview. In: Bensoussan, A., et al. (eds.) Handbook of Numerical Analysis, vol. XV, pp. 89–167. North-Holland, Amsterdam (2009). Special Volume: Mathematical Modeling and Numerical Methods in Finance

    Google Scholar 

  10. Gushchin, A.A.: On taking limits under the compensator sign. In: Ibragimov, I.A., et al. (eds.) Probability Theory and Mathematical Statistics, St. Petersburg, 1993, pp. 185–192. Gordon and Breach, Amsterdam (1996)

    Google Scholar 

  11. Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Imkeller, P., Perkowski, N.: The existence of dominating local martingale measures. Finance Stoch. 685–717 (2015, this issue). doi:10.1007/s00780-015-0264-0

  14. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  15. Jakubowski, A., Mémin, J., Pagès, G.: Convergence en loi des suites d’intégrales stochastiques sur l’espace \(\mathbf{D}^{1}\) de Skorokhod. Probab. Theory Relat. Fields 81, 111–137 (1989)

    Article  MATH  Google Scholar 

  16. Kabanov, Y.M.: On the FTAP of Kreps–Delbaen–Schachermayer. In: Kabanov, Y., Rozovski, B., Shiryaev, A. (eds.) Statistics and Control of Stochastic Processes, Moscow, 1995/1996, pp. 191–203. World Sci. Publ., River Edge (1997)

    Google Scholar 

  17. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kardaras, C.: A structural characterization of numéraires of convex sets of nonnegative random variables. Positivity 16, 245–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kardaras, C.: Generalized supermartingale deflators under limited information. Math. Finance 23, 186–197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kardaras, C.: On the closure in the Emery topology of semimartingale wealth-process sets. Ann. Appl. Probab. 23, 1355–1376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kreps, D.M.: Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kurtz, T.G., Protter, P.: Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19, 1035–1070 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kurtz, T.G., Protter, P.E.: Weak convergence of stochastic integrals and differential equations. In: Talay, D., Tubaro, L. (eds.) Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995. Lecture Notes in Math., vol. 1627, pp. 1–41. Springer, Berlin (1996)

    Chapter  Google Scholar 

  24. Mémin, J.: Espaces de semi martingales et changements de probabilité. Z. Wahrscheinlichkeitstheor. Verw. Geb. 52, 9–39 (1980)

    Article  MATH  Google Scholar 

  25. Mémin, J., Słominski, L.: Condition UT et stabilité en loi des solutions d’équations différentielles stochastiques. In: Azéma, J., Yor, M., Meyer, P.-A. (eds.) Séminaire de Probabilités de Strasbourg XXV. Lecture Notes in Math., vol. 1485, pp. 162–177 (1991)

    Chapter  Google Scholar 

  26. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meyer, P.-A.: Martingales and stochastic integrals. I. In: Dold, A., Eckmann, B. (eds.) Lecture Notes in Math., vol. 284. Springer, Berlin (1972)

    Google Scholar 

  28. Rokhlin, D.B.: On the existence of an equivalent supermartingale density for a fork-convex family of random processes. Mat. Zametki 87, 594–603 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ross, S.A.: A simple approach to the valuation of risky streams. J. Bus. 51, 453–475 (1978)

    Article  Google Scholar 

  30. Schachermayer, W.: Martingale measures for discrete-time processes with infinite horizon. Math. Finance 4, 25–55 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schachermayer, W.: Fundamental theorem of asset pricing. In: Cont, R. (ed.) Encyclopedia of Quantitative Finance, pp. 792–801. Wiley, New York (2010)

    Google Scholar 

  32. Stricker, C.: Lois de semimartingales et critères de compacité. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités de Strasbourg XIX. Lecture Notes in Math., vol. 1123, pp. 209–217 (1985)

    Google Scholar 

  33. Stricker, C.: Arbitrage et lois de martingale. Ann. Inst. Henri Poincaré Probab. Stat. 26, 451–460 (1990)

    MathSciNet  MATH  Google Scholar 

  34. Yan, J.A.: Caractérisation d’une classe d’ensembles convexes de \(L^{1}\) ou \(H^{1}\). In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIV, Paris, 1978/1979. Lecture Notes in Math., vol. 784, pp. 220–222. Springer, Berlin (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa Cuchiero.

Additional information

The second author gratefully acknowledges support from the ETH Foundation. We thank Freddy Delbaen, Aleksandr Gushchin, Yuri Kabanov, Costas Kardaras, Irene Klein, Chong Liu, Walter Schachermayer and Martin Schweizer for fruitful discussions on the topic.

Appendix: The P-UT property

Appendix: The P-UT property

This section is dedicated to state some results related to the P-UT property, which can be found in [25], [15], and [14, Chapter VI.6].

Proposition A.1

Let \((X^{n})_{n \geq0} \) be a sequence of semimartingales satisfying the P-UT property. Then

  1. (i)

    \((|X^{n}|^{*}_{1})_{n\geq0}\) is bounded in \(L^{0}\);

  2. (ii)

    \(([X^{n}, X^{n}]_{1})_{n \geq0}\) is bounded in \(L^{0}\).

Proof

See [15, Lemme 1.2] or [25, Lemme 1.3]. □

The following proposition characterizes the P-UT property in terms of the \(L^{0}\)-boundedness of certain parts in the semimartingale decomposition (5.1).

Proposition A.2

Let \((X^{n})_{n \geq0} \) be a sequence of semimartingales and consider the semimartingale decomposition (5.1) for some \(C >0\). Then \((X^{n}) \) satisfies the P-UT property if and only if the following three conditions hold:

  1. (i)

    The sequence \({(\operatorname{TV}(\check{X}^{n,C})_{1})}_{n \geq 0}\) of total variations of \(\check{X}^{n,C}\) is bounded in  \(L^{0}\).

  2. (ii)

    The sequence \(([M^{n,C}, M^{n,C}]_{1})_{n \geq0}\) is bounded in \(L^{0}\).

  3. (iii)

    The sequence \({(\operatorname{TV}(B^{n,C})_{1})}_{n \geq0}\) of total variations of \(B^{n,C}\) is bounded in  \(L^{0}\).

Proof

See [25, Théorème 1.4] or [14, Theorem VI.6.15]. □

The following theorem builds the basis of Proposition 5.2.

Theorem A.3

Let \((H^{n})_{n \geq0}\) be a sequence of adapted càdlàg processes, and \((X^{n})_{n \geq0} \) a sequence of semimartingales satisfying the P-UT property. If the sequence \((H^{n},X^{n})\) converges uniformly in probability to \((H,X)\), then the stochastic integrals \((H^{n}_{-} \bullet X^{n})\) converge to \((H_{-} \bullet X)\) uniformly in probability as well. In particular, \([X^{n}, X^{n}]_{1} \to[X,X]_{1}\) in probability.

Proof

See [15, Théorème 2.6] or [25, Théorème 1.8, Corollaire 1.9]. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuchiero, C., Teichmann, J. A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing. Finance Stoch 19, 743–761 (2015). https://doi.org/10.1007/s00780-015-0276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-015-0276-9

Keywords

Mathematics Subject Classification

JEL Classification