Polynomial processes and their applications to mathematical finance | Finance and Stochastics
Skip to main content

Polynomial processes and their applications to mathematical finance

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We introduce a class of Markov processes, called m-polynomial, for which the calculation of (mixed) moments up to order m only requires the computation of matrix exponentials. This class contains affine processes, processes with quadratic diffusion coefficients, as well as Lévy-driven SDEs with affine vector fields. Thus, many popular models such as exponential Lévy models or affine models are covered by this setting. The applications range from statistical GMM estimation procedures to new techniques for option pricing and hedging. For instance, the efficient and easy computation of moments can be used for variance reduction techniques in Monte Carlo methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. All statements concerning the characteristics are meant up to an evanescent set.

  2. We thank Martin Schweizer for pointing out this result to us.

  3. We write here μ 0 for the constant part of the jump measure in contrast to [7], where it is denoted by m.

References

  1. Akhiezer, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner Publishing Co., New York (1965). Translated by N. Kemmer

    MATH  Google Scholar 

  2. Bates, D.S.: Post-’87 crash fears in the S&P 500 futures option market. J. Econom. 94, 181–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73 (1998)

    Google Scholar 

  4. Chen, L., Filipović, D., Poor, H.V.: Quadratic term structure models for risk-free and defaultable rates. Math. Finance 14, 515–536 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheridito, P., Filipović, D., Yor, M.: Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann. Appl. Probab. 15, 1713–1732 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Çinlar, E., Jacod, J., Protter, P., Sharpe, M.J.: Semimartingales and Markov processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 54, 161–219 (1980)

    Article  MATH  Google Scholar 

  7. Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dunkl, C.F.: Hankel transforms associated to finite reflection groups. In: Beals, R.W. (ed.) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Tampa, FL, 1991. Contemp. Math., vol. 138, pp. 123–138. Amer. Math. Soc., Providence (1992)

    Chapter  Google Scholar 

  9. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli, R. Schnaubelt

    MATH  Google Scholar 

  10. Forman, J.L., Sørensen, M.: The Pearson diffusions: A class of statistically tractable diffusion processes. Scand. J. Stat. 35, 438–465 (2008)

    Article  MATH  Google Scholar 

  11. Gallardo, L., Yor, M.: Some remarkable properties of the Dunkl martingales. In: Emery, M., Yor, M. (eds.) In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX. Lecture Notes in Math., vol. 1874, pp. 337–356. Springer, Berlin (2006)

    Chapter  Google Scholar 

  12. Gatheral, J.: The Volatility Surface: A Practitioner’s Guide. Wiley Finance (2006)

    Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  14. Gourieroux, C., Jasiak, J.: Multivariate Jacobi process with application to smooth transitions. J. Econom. 131, 475–505 (2006)

    Article  MathSciNet  Google Scholar 

  15. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (1987)

    MATH  Google Scholar 

  16. Jacod, J., Kurtz, T.G., Méléard, S., Protter, P.: The approximate Euler method for Lévy driven stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 41, 523–558 (2005)

    Article  MATH  Google Scholar 

  17. Keller-Ressel, M., Schachermayer, W., Teichmann, J.: Affine processes are regular. Probab. Theory Relat. Fields 151, 591–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In: Real and Stochastic Analysis. Trends Math., pp. 305–373. Birkhäuser, Boston (2004)

    Chapter  Google Scholar 

  19. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801–836 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975)

    MATH  Google Scholar 

  21. Reimer, M.: Multivariate Polynomial Approximation. International Series of Numerical Mathematics, vol. 144. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  22. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales. Vol. 1 Foundations. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). Reprint of the second (1994) edition

    MATH  Google Scholar 

  23. Zhou, H.: Itô conditional moment generator and the estimation of short rate processes. J. Financ. Econom. 1, 250–271 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

All authors gratefully acknowledge the support from the FWF grant Y 328 (START prize from the Austrian Science Fund) and from ETH Foundation. Furthermore the authors are grateful for many comments and valuable suggestions by Chris Rogers, which improved our paper a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Teichmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuchiero, C., Keller-Ressel, M. & Teichmann, J. Polynomial processes and their applications to mathematical finance. Finance Stoch 16, 711–740 (2012). https://doi.org/10.1007/s00780-012-0188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-012-0188-x

Keywords

Mathematics Subject Classification

JEL Classification