Maximum entropy distributions inferred from option portfolios on an asset | Finance and Stochastics Skip to main content
Log in

Maximum entropy distributions inferred from option portfolios on an asset

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We obtain the maximum entropy distribution for an asset from call and digital option prices. A rigorous mathematical proof of its existence and exponential form is given, which can also be applied to legitimise a formal derivation by Buchen and Kelly (J. Financ. Quant. Anal. 31:143–159, 1996). We give a simple and robust algorithm for our method and compare our results to theirs. We present numerical results which show that our approach implies very realistic volatility surfaces even when calibrating only to at-the-money options. Finally, we apply our approach to options on the S&P 500 index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In Csiszár’s paper, the minus sign in front of the definition of entropy is dropped and its minimisation (rather than maximisation) is studied.

References

  1. Avellaneda, M., Friedman, C., Holmes, R., Samperi, D.: Calibrating volatility surfaces via relative-entropy minimization. Appl. Math. Finance 4, 37–64 (1997)

    Article  MATH  Google Scholar 

  2. Borwein, J., Choksi, R., Maréchal, P.: Probability distributions of assets inferred from option prices via the principle of maximum entropy. SIAM J. Optim. 14, 464–478 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breeden, D.T., Litzenberger, R.H.: Prices of state-contingent claims implicit in option prices. J. Bus. 51, 621–651 (1978)

    Article  Google Scholar 

  4. Brody, D.C., Buckley, I.R.C., Meister, B.K.: Preposterior analysis for option pricing. Quant. Finance 4, 465–477 (2004)

    Article  MathSciNet  Google Scholar 

  5. Brody, D.C., Buckley, I.R.C., Constantinou, I., Meister, B.: Entropic calibration revisited. Phys. Lett. A 337, 257–264 (2005)

    Article  MATH  Google Scholar 

  6. Brody, D., Buckley, I.R.C., Constantinou, I.: Option price calibration from Rényi entropy. Phys. Lett. A 366, 298–307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buchen, P.W., Kelly, M.: The maximum entropy distribution of an asset inferred from option prices. J. Financ. Quant. Anal. 31, 143–159 (1996)

    Article  Google Scholar 

  8. Chicago Board Options Exchange Website: CBOE Binary Options, April 2010. www.cboe.com

  9. Coval, J.D., Jakub, J., Stafford, E.: The economics of structured finance. J. Econ. Perspect. 23, 3–25 (2009)

    Article  Google Scholar 

  10. Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3, 146–158 (1975)

    Article  MATH  Google Scholar 

  11. Dempster, M.A.H., Medova, E.A., Yang, S.W.: Empirical copulas for CDO tranche pricing using relative entropy. Int. J. Theor. Appl. Finance 10, 679–702 (2007)

    Article  Google Scholar 

  12. Derman, E., Kani, I.: Riding on a smile. Risk 7, 32–39 (1994)

    Google Scholar 

  13. Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)

    Google Scholar 

  14. Frittelli, M.: The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Finance 10, 39–52 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gatheral, J.: The Volatility Surface—A Practitioner’s Guide, Wiley Finance. Wiley, New York (2006)

    Google Scholar 

  16. Gulko, L.: The entropic market hypothesis. Int. J. Theor. Appl. Finance 2, 293–329 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gulko, L.: The entropy theory of bond option pricing. Int. J. Theor. Appl. Finance 5, 355–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jäckel, P.: By Implication. Wilmott, pp. 60–66, November 2006

  19. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  20. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank David Chevance, Peter Jäckel, Yannick Malevergne and Wolfgang Scherer for helpful comments and suggestions. We also thank the organisers of the WBS 5th Fixed Income Conference in Budapest, where we had the opportunity to present some of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassio Neri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neri, C., Schneider, L. Maximum entropy distributions inferred from option portfolios on an asset. Finance Stoch 16, 293–318 (2012). https://doi.org/10.1007/s00780-011-0167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-011-0167-7

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation