On the QR decomposition of $${\fancyscript {H}}$$ -matrices | Computing Skip to main content
Log in

On the QR decomposition of \({\fancyscript {H}}\) -matrices

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The hierarchical (\({\fancyscript{H}}\) -) matrix format allows storing a variety of dense matrices from certain applications in a special data-sparse way with linear-polylogarithmic complexity. Many operations from linear algebra like matrix–matrix and matrix–vector products, matrix inversion and LU decomposition can be implemented efficiently using the \({\fancyscript{H}}\) -matrix format. Due to its importance in solving many problems in numerical linear algebra like least-squares problems, it is also desirable to have an efficient QR decomposition of \({\fancyscript{H}}\) -matrices. In the past, two different approaches for this task have been suggested in Bebendorf (Hierarchical matrices: a means to efficiently solve elliptic boundary value problems. Lecture notes in computational science and engineering (LNCSE), vol 63. Springer, Berlin, 2008) and Lintner (Dissertation, Fakultät für Mathematik, TU München. http://tumb1.biblio.tu-muenchen.de/publ/diss/ma/2002/lintner.pdf, 2002). We will review the resulting methods and suggest a new algorithm to compute the QR decomposition of an \({\fancyscript{H}}\) -matrix. Like other \({\fancyscript{H}}\) -arithmetic operations, the \({\fancyscript{H}}\) QR decomposition is of linear-polylogarithmic complexity. We will compare our new algorithm with the older ones by using two series of test examples and discuss benefits and drawbacks of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn. SIAM, Philadelphia

    Google Scholar 

  2. Bebendorf M (2005) Hierarchical LU decomposition-based preconditioners for BEM. Computing 74(3): 225–247

    Article  MATH  MathSciNet  Google Scholar 

  3. Bebendorf M (2008) Hierarchical matrices: a means to efficiently solve elliptic boundary value problems. Lecture notes in computational science and engineering (LNCSE), vol 63. Springer, Berlin

  4. Demmel JW (1997) Applied numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  5. Golub G, Van Loan C (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

  6. Grasedyck L (2001) Theorie und Anwendungen Hierarchischer Matrizen. Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel

  7. Grasedyck L, Hackbusch W (2003) Construction and arithmetics of \({\fancyscript{H}}\) -matrices. Computing 70(4): 295–334

    Article  MATH  MathSciNet  Google Scholar 

  8. Grasedyck L, Kriemann R, Le Borne S (2008) Parallel black box \({\fancyscript{H}}\) -LU preconditioning for elliptic boundary value problems. Comput Vis Sci 11: 273–291

    Article  MathSciNet  Google Scholar 

  9. Grasedyck L, Le Borne S (2006) \({\fancyscript{H}}\) -matrix preconditioners in convection-dominated problems. SIAM J Matrix Anal Appl 27(4): 1172–1189

    Article  MATH  MathSciNet  Google Scholar 

  10. Hackbusch W (1999) A sparse matrix arithmetic based on \({\fancyscript{H}}\) -matrices. Part I: introduction to \({\fancyscript{H}}\) -matrices. Computing 62(2): 89–108

    Article  MATH  MathSciNet  Google Scholar 

  11. Hackbusch W (2009) Hierarchische matrizen. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Hackbusch W, Khoromskij BN (2000) A sparse \({\fancyscript{H}}\) -matrix arithmetic. II. Application to multi-dimensional problems. Computing 64(1): 21–47

    MATH  MathSciNet  Google Scholar 

  13. Higham NJ (1986) Computing the polar decomposition with applications. SIAM J Sci Stat Computing 7(4): 1160–1174

    Article  MATH  MathSciNet  Google Scholar 

  14. Higham NJ (2002) Accuracy and stability of numerical algorithms. SIAM, Philadelphia

    MATH  Google Scholar 

  15. \({\fancyscript{H}}\) lib 1.3. http://www.hlib.org (1999–2009)

  16. Lintner M (2002) Lösung der 2D Wellengleichung mittels hierarchischer Matrizen. Dissertation, Fakultät für Mathematik, TU München. http://tumb1.biblio.tu-muenchen.de/publ/diss/ma/2002/lintner.pdf

  17. Lintner M (2004) The eigenvalue problem for the 2D Laplacian in \({\fancyscript{H}}\) -matrix arithmetic and application to the heat and wave equation. Computing 72: 293–323

    Article  MATH  MathSciNet  Google Scholar 

  18. Robey T, Sulsky D (1998) Row ordering for a sparse QR decomposition. SIAM J Matrix Anal Appl 15(4): 1208–1225

    Article  MathSciNet  Google Scholar 

  19. Steinbach O (2005) Lösungsverfahren für lineare Gleichungssysteme. Algorithmen und Anwendungen. Mathematik für Ingenieure und Naturwissenschaftler. Teubner, Wiesbaden

  20. Stewart GW (1999) Four algorithms for the efficient computation of truncated pivoted QR approximations to a sparse matrix. Num Math 83(2): 313–323

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mach.

Additional information

Communicated by Xiaojun Chen.

This work was supported by a grant of the Free State of Saxony (501-G-209)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benner, P., Mach, T. On the QR decomposition of \({\fancyscript {H}}\) -matrices. Computing 88, 111–129 (2010). https://doi.org/10.1007/s00607-010-0087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-010-0087-y

Keywords

Mathematics Subject Classification (2000)