Abstract
The hierarchical (\({\fancyscript{H}}\) -) matrix format allows storing a variety of dense matrices from certain applications in a special data-sparse way with linear-polylogarithmic complexity. Many operations from linear algebra like matrix–matrix and matrix–vector products, matrix inversion and LU decomposition can be implemented efficiently using the \({\fancyscript{H}}\) -matrix format. Due to its importance in solving many problems in numerical linear algebra like least-squares problems, it is also desirable to have an efficient QR decomposition of \({\fancyscript{H}}\) -matrices. In the past, two different approaches for this task have been suggested in Bebendorf (Hierarchical matrices: a means to efficiently solve elliptic boundary value problems. Lecture notes in computational science and engineering (LNCSE), vol 63. Springer, Berlin, 2008) and Lintner (Dissertation, Fakultät für Mathematik, TU München. http://tumb1.biblio.tu-muenchen.de/publ/diss/ma/2002/lintner.pdf, 2002). We will review the resulting methods and suggest a new algorithm to compute the QR decomposition of an \({\fancyscript{H}}\) -matrix. Like other \({\fancyscript{H}}\) -arithmetic operations, the \({\fancyscript{H}}\) QR decomposition is of linear-polylogarithmic complexity. We will compare our new algorithm with the older ones by using two series of test examples and discuss benefits and drawbacks of the new approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn. SIAM, Philadelphia
Bebendorf M (2005) Hierarchical LU decomposition-based preconditioners for BEM. Computing 74(3): 225–247
Bebendorf M (2008) Hierarchical matrices: a means to efficiently solve elliptic boundary value problems. Lecture notes in computational science and engineering (LNCSE), vol 63. Springer, Berlin
Demmel JW (1997) Applied numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia
Golub G, Van Loan C (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore
Grasedyck L (2001) Theorie und Anwendungen Hierarchischer Matrizen. Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Christian-Albrechts-Universität zu Kiel
Grasedyck L, Hackbusch W (2003) Construction and arithmetics of \({\fancyscript{H}}\) -matrices. Computing 70(4): 295–334
Grasedyck L, Kriemann R, Le Borne S (2008) Parallel black box \({\fancyscript{H}}\) -LU preconditioning for elliptic boundary value problems. Comput Vis Sci 11: 273–291
Grasedyck L, Le Borne S (2006) \({\fancyscript{H}}\) -matrix preconditioners in convection-dominated problems. SIAM J Matrix Anal Appl 27(4): 1172–1189
Hackbusch W (1999) A sparse matrix arithmetic based on \({\fancyscript{H}}\) -matrices. Part I: introduction to \({\fancyscript{H}}\) -matrices. Computing 62(2): 89–108
Hackbusch W (2009) Hierarchische matrizen. Springer, Berlin
Hackbusch W, Khoromskij BN (2000) A sparse \({\fancyscript{H}}\) -matrix arithmetic. II. Application to multi-dimensional problems. Computing 64(1): 21–47
Higham NJ (1986) Computing the polar decomposition with applications. SIAM J Sci Stat Computing 7(4): 1160–1174
Higham NJ (2002) Accuracy and stability of numerical algorithms. SIAM, Philadelphia
\({\fancyscript{H}}\) lib 1.3. http://www.hlib.org (1999–2009)
Lintner M (2002) Lösung der 2D Wellengleichung mittels hierarchischer Matrizen. Dissertation, Fakultät für Mathematik, TU München. http://tumb1.biblio.tu-muenchen.de/publ/diss/ma/2002/lintner.pdf
Lintner M (2004) The eigenvalue problem for the 2D Laplacian in \({\fancyscript{H}}\) -matrix arithmetic and application to the heat and wave equation. Computing 72: 293–323
Robey T, Sulsky D (1998) Row ordering for a sparse QR decomposition. SIAM J Matrix Anal Appl 15(4): 1208–1225
Steinbach O (2005) Lösungsverfahren für lineare Gleichungssysteme. Algorithmen und Anwendungen. Mathematik für Ingenieure und Naturwissenschaftler. Teubner, Wiesbaden
Stewart GW (1999) Four algorithms for the efficient computation of truncated pivoted QR approximations to a sparse matrix. Num Math 83(2): 313–323
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Xiaojun Chen.
This work was supported by a grant of the Free State of Saxony (501-G-209)
Rights and permissions
About this article
Cite this article
Benner, P., Mach, T. On the QR decomposition of \({\fancyscript {H}}\) -matrices. Computing 88, 111–129 (2010). https://doi.org/10.1007/s00607-010-0087-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-010-0087-y