Style matching CAPTCHA: match neural transferred styles to thwart intelligent attacks | Multimedia Systems Skip to main content

Advertisement

Log in

Style matching CAPTCHA: match neural transferred styles to thwart intelligent attacks

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Completely automated public turing test to tell computers and humans apart (CAPTCHA) is widely used to prevent malicious automated attacks on various online services. Text- and image-CAPTCHAs have shown broader acceptability due to usability and security factors. However, recent progress in deep learning implies that text-CAPTCHAs can easily be exposed to various fraudulent attacks. Thus, image-CAPTCHAs are getting research attention to enhance usability and security. In this work, the neural-style transfer (NST) is adapted for designing an image-CAPTCHA algorithm to enhance security while maintaining human performance. In NST-rendered image-CAPTCHAs, existing methods inquire a user to identify or localize the salient object (e.g., content) which is solvable effortlessly by off-the-shelf intelligent tools. Contrarily, we propose a Style Matching CAPTCHA (SMC) that asks a user to select the style image which is applied in the NST method. A user can solve a random SMC challenge by understanding the semantic correlation between the content and style output as a cue. The performance in solving SMC is evaluated based on the 1368 responses collected from 152 participants through a web-application. The average solving accuracy in three sessions is 95.61%; and the average response time for each challenge per user is 6.52 s, respectively. Likewise, a Smartphone Application (SMC-App) is devised using the proposed method. The average solving accuracy through SMC-App is 96.33%, and the average solving time is 5.13 s. To evaluate the vulnerability of SMC, deep learning-based attack schemes using Convolutional Neural Networks (CNN), such as ResNet-50 and Inception-v3 are simulated. The average accuracy of attacks considering various studies on SMC using ResNet-50 and Inception-v3 is 37%, which is improved over existing methods. Moreover, in-depth security analysis, experimental insights, and comparative studies imply the suitability of the proposed SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://www.kaggle.com/bryanb/abstract-art-gallery.

  2. https://www.kaggle.com/c/cvdl2020finegrained.

References

  1. Acien, A., Morales, A., Fierrez, J., Vera-Rodriguez, R., Delgado-Mohatar, O.: Becaptcha: Behavioral bot detection using touchscreen and mobile sensors benchmarked on humidb. Eng. Appl. Artif. Intell. 98, 104058 (2021). https://doi.org/10.1016/j.engappai.2020.104058

    Article  Google Scholar 

  2. Alnfiai, M., Alassery, F.: Tapcaptcha: non-visual captcha on touchscreens for visually impaired people. Journal on Multimodal User Interfaces pp. 1–14 (2022). https://doi.org/10.1007/s12193-022-00394-2

  3. Baird, H.S., Bentley, J.L.: Implicit captchas. In: Document Recognition and Retrieval XII, vol. 5676, pp. 191–196. International Society for Optics and Photonics (2005). https://doi.org/10.1117/12.590944

  4. Bera, A., Bhattacharjee, D., Nasipuri, M.: Person recognition using alternative hand geometry. International Journal of Biometrics 6(3), 231–247 (2014). https://doi.org/10.1504/IJBM.2014.064403

    Article  Google Scholar 

  5. Bera, A., Bhattacharjee, D., Nasipuri, M.: Hand biometric verification with hand image-based captcha. In: Advanced Computing and Systems for Security, pp. 3–18. Springer (2018). https://doi.org/10.1007/978-981-10-8180-4_1

  6. Bera, A., Bhattacharjee, D., Shum, H.P.: Two-stage human verification using handcaptcha and anti-spoofed finger biometrics with feature selection. Expert Syst. Appl. 171, 114583 (2021). https://doi.org/10.1016/j.eswa.2021.114583

    Article  Google Scholar 

  7. Breitinger, F., Tully-Doyle, R., Hassenfeldt, C.: A survey on smartphone user’s security choices, awareness and education. Computers & Security 88, 101647 (2020). https://doi.org/10.1016/j.cose.2019.101647

    Article  Google Scholar 

  8. Chen, F., Wang, Y., Xu, S., Wang, F., Sun, F., Jia, X.: Style transfer network for complex multi-stroke text. Multimedia Systems pp. 1–10 (2023). https://doi.org/10.1007/s00530-023-01047-4

  9. Chen, H., Jiang, B., Chen, H.: Stylecaptcha: Captcha based on stylized images to defend against deep networks. In: Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, pp. 161–170 (2020). https://doi.org/10.1145/3412815.3416895

  10. Chen, H., Zhao, L., Wang, Z., Zhang, H., Zuo, Z., Li, A., Xing, W., Lu, D.: Dualast: Dual style-learning networks for artistic style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 872–881 (2021)

  11. Chen, H.Y., Fang, I., Cheng, C.M., Chiu, W.C., et al.: Self-contained stylization via steganography for reverse and serial style transfer. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2163–2171 (2020)

  12. Cheng, Z., Gao, H., Liu, Z., Wu, H., Zi, Y., Pei, G.: Image-based captchas based on neural style transfer. IET Inf. Secur. 13(6), 519–529 (2019). https://doi.org/10.1049/iet-ifs.2018.5036

    Article  Google Scholar 

  13. Conti, M., Guarisco, C., Spolaor, R.: Captchastar! a novel captcha based on interactive shape discovery. In: International Conference on Applied Cryptography and Network Security, pp. 611–628. Springer (2016). https://doi.org/10.1007/978-3-319-39555-5_33

  14. Conti, M., Pajola, L., Tricomi, P.P.: Captcha attack: Turning captchas against humanity. arXiv preprint arXiv:2201.04014 (2022). https://doi.org/10.48550/arXiv.2201.04014

  15. Dang, V.N., Galati, F., Cortese, R., Di Giacomo, G., Marconetto, V., Mathur, P., Lekadir, K., Lorenzi, M., Prados, F., Zuluaga, M.A.: Vessel-captcha: an efficient learning framework for vessel annotation and segmentation. Med. Image Anal. 75, 102263 (2022). https://doi.org/10.1016/j.media.2021.102263

    Article  Google Scholar 

  16. Datta, R., Li, J., Wang, J.Z.: Imagination: a robust image-based captcha generation system. In: Proceedings of the 13th annual ACM international conference on Multimedia, pp. 331–334. ACM (2005). https://doi.org/10.1145/1101149.1101218

  17. Deng, X.: Enhancing image quality via style transfer for single image super-resolution. IEEE Signal Process. Lett. 25(4), 571–575 (2018). https://doi.org/10.1109/LSP.2018.2805809

    Article  Google Scholar 

  18. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a captcha that exploits interest-aligned manual image categorization. CCS 7, 366–374 (2007). https://doi.org/10.1145/1315245.1315291

    Article  Google Scholar 

  19. Feng, Y., Cao, Q., Qi, H., Ruoti, S.: Sencaptcha: A mobile-first captcha using orientation sensors. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4(2), 1–26 (2020). https://doi.org/10.1145/3397312

    Article  Google Scholar 

  20. Gao, H., Cao, F., Zhang, P.: Annulus: A novel image-based captcha scheme. In: 2016 IEEE Region 10 Conference (TENCON), pp. 464–467. IEEE (2016). https://doi.org/10.1109/TENCON.2016.7848042

  21. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2414–2423 (2016)

  22. Godi, M., Joppi, C., Giachetti, A., Pellacini, F., Cristani, M.: Texel-att: Representing and classifying element-based textures by attributes. arXiv preprint arXiv:1908.11127 (2019). https://doi.org/10.48550/arXiv.1908.11127

  23. Golle, P.: Machine learning attacks against the asirra captcha. In: Proceedings of the 15th ACM conference on Computer and communications security, pp. 535–542 (2008). https://doi.org/10.1145/1455770.1455838

  24. Goswami, G., Powell, B.M., Vatsa, M., Singh, R., Noore, A.: Facedcaptcha: Face detection based color image captcha. Futur. Gener. Comput. Syst. 31, 59–68 (2014). https://doi.org/10.1016/j.future.2012.08.013

    Article  Google Scholar 

  25. Goswami, G., Powell, B.M., Vatsa, M., Singh, R., Noore, A.: Fr-captcha: Captcha based on recognizing human faces. PLoS ONE 9(4), e91708 (2014). https://doi.org/10.1371/journal.pone.0091708

    Article  Google Scholar 

  26. Gougeon, T., Lacharme, P.: A simple attack on captchastar. In: International Conference on Information Systems Security and Privacy, pp. 66–85. Springer (2018). https://doi.org/10.1007/978-3-030-25109-3_4

  27. Gupta, A., Johnson, J., Alahi, A., Fei-Fei, L.: Characterizing and improving stability in neural style transfer. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4067–4076 (2017). https://doi.org/10.48550/arXiv.1705.02092

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

  29. Hosam, O., Abousamra, R.: Enhancing deep training of image landmarking with image captcha. In: 2022 8th International Conference on Information Technology Trends (ITT), pp. 88–93. IEEE (2022). https://doi.org/10.1109/ITT56123.2022.9863967

  30. Hou, X., Shen, L., Sun, K., Qiu, G.: Deep feature consistent variational autoencoder. In: 2017 IEEE winter conference on applications of computer vision (WACV), pp. 1133–1141. IEEE (2017). https://doi.org/10.1109/WACV.2017.131

  31. Jia, X., Xiao, J., Wu, C.: Tics: text–image-based semantic captcha synthesis via multi-condition adversarial learning. The Visual Computer pp. 1–13 (2022). https://doi.org/10.1007/s00371-021-02061-1

  32. Jin, X., Han, R., Duan, Y., Ning, N., Li, X.: Ar captcha: Recognizing robot by augmented reality. Concurrency and Computation: Practice and Experience 33(15), e5585 (2021). https://doi.org/10.1002/cpe.5585

    Article  Google Scholar 

  33. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neural style transfer: A review. IEEE Trans. Visual Comput. Graphics 26(11), 3365–3385 (2019). https://doi.org/10.1109/TVCG.2019.2921336

    Article  Google Scholar 

  34. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: European conference on computer vision, pp. 694–711. Springer (2016). https://doi.org/10.1007/978-3-319-46475-6_43

  35. Kong, X., Deng, Y., Tang, F., Dong, W., Ma, C., Chen, Y., He, Z., Xu, C.: Exploring the temporal consistency of arbitrary style transfer: A channelwise perspective. IEEE Transactions on Neural Networks and Learning Systems (2023). https://doi.org/10.1109/TNNLS.2022.3230084

    Article  Google Scholar 

  36. Kumar, M., Jindal, M., Kumar, M.: Distortion, rotation and scale invariant recognition of hollow hindi characters. Sādhanā 47(2), 92 (2022). https://doi.org/10.1007/s12046-022-01847-w

    Article  Google Scholar 

  37. Kumar, M., Jindal, M., Kumar, M.: A systematic survey on captcha recognition: types, creation and breaking techniques. Archives of Computational Methods in Engineering 29(2), 1107–1136 (2022). https://doi.org/10.1007/s11831-021-09608-4

    Article  Google Scholar 

  38. Kumar, M., Jindal, M., Kumar, M.: An efficient technique for breaking of coloured hindi captcha. Soft Computing pp. 1–26 (2023). https://doi.org/10.1007/s00500-023-07844-3

  39. Kumar, M., Jindal, M.K., Kumar, M.: A novel attack on monochrome and greyscale devanagari captchas. Transactions on Asian and Low-Resource Language Information Processing 20(4), 1–30 (2021). https://doi.org/10.1145/3439798

    Article  Google Scholar 

  40. Kumar, M., Jindal, M.K., Kumar, M.: Design of innovative captcha for hindi language. Neural Computing and Applications pp. 1–36 (2022). https://doi.org/10.1007/s00521-021-06686-0

  41. Lewis, J.: Fast normalized cross-correlation, 1995. In: Vision Interface, vol. 2010, pp. 120–123 (2010)

  42. Li, C., Chen, X., Wang, H., Wang, P., Zhang, Y., Wang, W.: End-to-end attack on text-based captchas based on cycle-consistent generative adversarial network. Neurocomputing 433, 223–236 (2021). https://doi.org/10.1016/j.neucom.2020.11.057

    Article  Google Scholar 

  43. Liu, X.C., Yang, Y.L., Hall, P.: Learning to warp for style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3702–3711 (2021)

  44. Ma, Y., Zhao, C., Li, X., Basu, A.: Rast: Restorable arbitrary style transfer via multi-restoration. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 331–340 (2023)

  45. Mallika, Ubhi, J.S., Aggarwal, A.K.: Neural style transfer for image within images and conditional gans for destylization. Journal of Visual Communication and Image Representation 85, 103483 (2022). https://doi.org/10.1016/j.jvcir.2022.103483

  46. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual captcha. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., vol. 1, pp. I–I. IEEE (2003). https://doi.org/10.1109/CVPR.2003.1211347

  47. Okada, M., Matsuyama, S.: New captcha for smartphones and tablet pc. In: 2012 IEEE Consumer Communications and Networking Conference (CCNC), pp. 34–35. IEEE (2012). https://doi.org/10.1109/CCNC.2012.6181038

  48. Osadchy, M., Hernandez-Castro, J., Gibson, S., Dunkelman, O., Pérez-Cabo, D.: No bot expects the deepcaptcha! introducing immutable adversarial examples with applications to captcha. Cryptology ePrint Archive (2016)

  49. Polakis, I., Ilia, P., Maggi, F., Lancini, M., Kontaxis, G., Zanero, S., Ioannidis, S., Keromytis, A.D.: Faces in the distorting mirror: Revisiting photo-based social authentication. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 501–512 (2014). https://doi.org/10.1145/2660267.2660317

  50. Rathor, V.S., Garg, B., Patil, M., Sharma, G.: Security analysis of image captcha using a mask r-cnn-based attack model. Int. J. Ad Hoc Ubiquitous Comput. 36(4), 238–247 (2021)

    Article  Google Scholar 

  51. Ray, P., Giri, D., Kumar, S., Sahoo, P.: Fp-captcha: An improved captcha design scheme based on face points. In: International Conference on Information Technology and Applied Mathematics, pp. 218–233. Springer (2019). https://doi.org/10.1007/978-3-030-34152-7_17

  52. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)

  53. Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos. In: German conference on pattern recognition, pp. 26–36. Springer (2016). https://doi.org/10.1007/978-3-319-45886-1_3

  54. Rui, Y., Liu, Z.: Artifacial: Automated reverse turing test using facial features. Multimedia Syst. 9(6), 493–502 (2004). https://doi.org/10.1145/957013.957075

    Article  Google Scholar 

  55. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  56. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp. 618–626 (2017)

  57. Shet, V.: Are you a robot? introducing no captcha recaptcha. Google Security Blog 3, 12 (2014)

    Google Scholar 

  58. Shi, C., Xu, X., Ji, S., Bu, K., Chen, J., Beyah, R., Wang, T.: Adversarial captchas. IEEE Transactions on. Cybernetics (2021). https://doi.org/10.1109/TCYB.2021.3071395

    Article  Google Scholar 

  59. Shirali-Shahreza, M., Shirali-Shahreza, S.: Captcha for blind people. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 995–998. IEEE (2007). https://doi.org/10.1109/ISSPIT.2007.4458048

  60. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). https://doi.org/10.48550/arXiv.1409.1556

  61. Singh, A., Jaiswal, V., Joshi, G., Sanjeeve, A., Gite, S., Kotecha, K.: Neural style transfer: A critical review. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3112996

    Article  Google Scholar 

  62. Sivakorn, S., Polakis, I., Keromytis, A.D.: I am robot:(deep) learning to break semantic image captchas. In: 2016 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 388–403. IEEE (2016). https://doi.org/10.1109/EuroSP.2016.37

  63. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826 (2016)

  64. Tang, M., Gao, H., Zhang, Y., Liu, Y., Zhang, P., Wang, P.: Research on deep learning techniques in breaking text-based captchas and designing image-based captcha. IEEE Trans. Inf. Forensics Secur. 13(10), 2522–2537 (2018). https://doi.org/10.1109/TIFS.2018.2821096

    Article  Google Scholar 

  65. Terada, K., Okabe, Y., Matsumoto, Y.: Is puzzle-based captcha secure against attacks based on cnn? In: 2023 International Conference on Information Networking (ICOIN), pp. 358–362. IEEE (2023). https://doi.org/10.1109/ICOIN56518.2023.10049032

  66. Thompson, N., McGill, T.J., Wang, X.: “security begins at home’’: Determinants of home computer and mobile device security behavior. computers & security 70, 376–391 (2017). https://doi.org/10.1016/j.cose.2017.07.003

    Article  Google Scholar 

  67. Uzun, E., Chung, S.P.H., Essa, I., Lee, W.: rtcaptcha: A real-time captcha based liveness detection system. In: NDSS (2018)

  68. Von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai problems for security. In: International Conference on the Theory and Applications of Cryptographic Techniques, pp. 294–311. Springer (2003). https://doi.org/10.1007/3-540-39200-9

  69. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: recaptcha: Human-based character recognition via web security measures. Science 321(5895), 1465–1468 (2008). https://doi.org/10.1126/science.1160379

    Article  MathSciNet  MATH  Google Scholar 

  70. Wang, P., Gao, H., Guo, X., Yuan, Z., Nian, J.: Improving the security of audio captchas with adversarial examples. IEEE Trans. Dependable Secure Comput. (2023). https://doi.org/10.1109/TDSC.2023.3236367

    Article  Google Scholar 

  71. Wang, P., Gao, H., Shi, Z., Yuan, Z., Hu, J.: Simple and easy: transfer learning-based attacks to text captcha. IEEE Access 8, 59044–59058 (2020). https://doi.org/10.1109/ACCESS.2020.2982945

    Article  Google Scholar 

  72. Wang, P., Gao, H., Xiao, C., Guo, X., Gao, Y., Zi, Y.: Extended research on the security of visual reasoning captcha. IEEE Transactions on Dependable and Secure Computing pp. 1–17 (2023). https://doi.org/10.1109/TDSC.2023.3238408

  73. Wang, P., Gao, H., Xiao, C., Guo, X., Gao, Y., Zi, Y.: Extended research on the security of visual reasoning captcha. IEEE Trans. Dependable Secure Comput. (2023). https://doi.org/10.1109/TDSC.2023.3238408

    Article  Google Scholar 

  74. Wang, P., Li, Y., Vasconcelos, N.: Rethinking and improving the robustness of image style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 124–133 (2021). https://doi.org/10.48550/arXiv.2104.05623

  75. Wang, Y., Wei, Y., Zhang, M., Liu, Y., Wang, B.: Make complex captchas simple: A fast text captcha solver based on a small number of samples. Inf. Sci. 578, 181–194 (2021). https://doi.org/10.1016/j.ins.2021.07.040

    Article  MathSciNet  Google Scholar 

  76. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  77. Weichbroth, P., Łysik, Ł: Mobile security: Threats and best practices. Mob. Inf. Syst. 2020, 1–15 (2020). https://doi.org/10.1155/2020/8828078

    Article  Google Scholar 

  78. Xu, X., Liu, L., Li, B.: A survey of captcha technologies to distinguish between human and computer. Neurocomputing 408, 292–307 (2020). https://doi.org/10.1016/j.neucom.2019.08.109

    Article  Google Scholar 

  79. Zhang, J., Tsai, M.Y., Kitchat, K., Sun, M.T., Sakai, K., Ku, W.S., Surasak, T., Thaipisutikul, T.: A secure annuli captcha system. Computers & Security 125, 103025 (2023). https://doi.org/10.1016/j.cose.2022.103025

    Article  Google Scholar 

  80. Zhang, K., Zheng, Y.: Information Security: 7th International Conference, ISC 2004, Palo Alto, CA, USA, September 27-29, 2004, Proceedings, vol. 3225. Springer (2004)

  81. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017). https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  82. Zhang, P., Gao, H., Cheng, Z., Cao, F.: Two novel image-based captcha schemes based on visual effects. In: CCF Chinese Conference on Computer Vision, pp. 14–25. Springer (2017). https://doi.org/10.1007/978-981-10-7305-2_2

  83. Zhu, B., Liu, J., Li, Q., Li, S., Xu, N.: Image-based captcha exploiting context in object recognition (2013). US Patent 8,483,518

  84. Zhu, B.B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K.: Attacks and design of image recognition captchas. In: Proceedings of the 17th ACM conference on Computer and communications security, pp. 187–200. ACM (2010). https://doi.org/10.1145/1866307.1866329

  85. Zi, Y., Gao, H., Cheng, Z., Liu, Y.: An end-to-end attack on text captchas. IEEE Trans. Inf. Forensics Secur. 15, 753–766 (2019). https://doi.org/10.1109/TIFS.2019.2928622

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editors and anonymous reviewers for their valuable comments. The authors are also thankful to the volunteers, experts, and participants who have provided their responses and suggestions for this research.

Author information

Authors and Affiliations

Authors

Contributions

A. conceptualization, methodology, prepared main manuscript. B. conceptualization, methodology, supervision, writing. C. and D. review and editing. A–D. All the authors reviewed the manuscript

Corresponding author

Correspondence to Asish Bera.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, P., Bera, A., Giri, D. et al. Style matching CAPTCHA: match neural transferred styles to thwart intelligent attacks. Multimedia Systems 29, 1865–1895 (2023). https://doi.org/10.1007/s00530-023-01075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-023-01075-0

Keywords

Navigation