MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques | Multimedia Systems Skip to main content
Log in

MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Recently, medical image processing has improved the quality of medical images for disease prediction in humans. For multiple disease prediction (MDP), we propose an efficient detection using retinal fundus images with the help of hybrid machine learning techniques (MDP-HML). First, we introduce an improved weed optimization (IWO) algorithm for segmentation which segments disease areas from the original image. Second, we develop a salp swarm optimization (SSO) algorithm for multi-feature extraction from segmented images which enhance the prediction accuracy. Third, we illustrate a new classifier, i.e., chaotic atom search optimization-based deep learning (CAS-DL) classifier for multi-disease classification for human beings with single retinal fundus image. Finally, the performance of the proposed MDP-HML technique can be analyzed with the different retinal datasets. The corresponding results can compare with the state-of-art techniques in terms of accuracy, precession, recall and F-measure. The accuracy of proposed MDP-HML technique is 20%, 22.3%, 22.7% and 32.6% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The sensitivity of proposed MDP-HML technique is 12%, 13%, 14% and 15% higher than the existing SVMGA, ANN, SVM and PNN classifiers. The specificity of proposed MDP-HML technique is 12.65%, 14.34%, 14.91% and 15.23% higher than the existing SVMGA, ANN, SVM and PNN classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The already existing algorithms data used to support the findings of this study have not been made available.

References

  1. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020)

    Article  Google Scholar 

  2. Lee, C., Jesse, R., Austin, S., Stuart, S., Arslan, Z., Brandon, M., Michael, B.S., et al.: In vivo estimation of optic nerve sheath stiffness using noninvasive MRI measurements and finite element modeling. J. Mech. Behav. Biomed. Mater. 110, 103924 (2020)

    Article  Google Scholar 

  3. Khan, K.B., Amir, A.K., Abdul, J., Muhammad, A.I., Najeeb, U., Muhammad, W.A., Kifayat, U., Muhammad, S.: A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends. Pattern Anal. Appl. 22(3), 767–802 (2019)

    Article  MathSciNet  Google Scholar 

  4. Wan, W., Liu, H., Long, Y., Wan, W., Li, Q., Zhu, W., Yan, Wu.: The association between circulating neutrophil extracellular trap related biomarkers and retinal vein occlusion incidence: a case-control pilot study. Exp. Eye Res. 210, 108702 (2021)

    Article  Google Scholar 

  5. Şahin, M., Bilal, E., Alparslan, Ş, Harun, Y., Fatih, M.T., İhsan, Ç.: Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in retinal vein occlusion. Clin. Exp. Optometry 103(4), 490–494 (2020)

    Article  Google Scholar 

  6. Nazir, T., Aun, I., Zain, S., Ali, J., Usman, A., Muhammad, T.M.: Diabetic retinopathy detection through novel tetragonal local octa patterns and extreme learning machines. Artif. Intell. Med. 99, 101695 (2019)

    Article  Google Scholar 

  7. Adebowale, M.A., Khin, T.L., Erika, S., Alamgir, H.M.: Intelligent web-phishing detection and protection scheme using integrated features of Images, frames and text. Expert Syst. Appl. 115, 300–313 (2019)

    Article  Google Scholar 

  8. Bowden, D., Kelly, A., Samuel, P., Victoria, S.S., Graham, J.K., Uazman, A., Daniel, R.M., Abd, A.T., Daniel, J.C. Reduced physical activity in young and older adults: metabolic and musculoskeletal implications. Ther. Adv. Endocrinol. Metab. 10, 2042018819888824 (2019)

  9. Serban, D., Nikolaos, P., Ana, M.D., Daniela, S., Vanessa, A.N., Geta, V., Cristinel, D.B., et al.: Diabetic retinopathy in patients with diabetic foot ulcer: a systematic review. Int. J. Lower Extremity Wounds 20(2), 98–103 (2021)

    Article  Google Scholar 

  10. Rigato, M., Laura, N., Armindo, T., Luigi, S., Leopoldo, M.C.S., Giovanni, P., Angelo, A., Gian, P.F.: Effectiveness of remote screening for diabetic retinopathy among patients referred to Mozambican Diabetes Association (AMODIA): a retrospective observational study. Acta Diabetol. 59(4), 563–569 (2022)

    Article  Google Scholar 

  11. Teo, Z.L., Yih-Chung, T., Marco, Y., Miao, L.C., Tyler, H.R., Ning, C., Mukharram, M.B., et al.: Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 128(11), 1580–1591 (2021)

    Article  Google Scholar 

  12. Li, X., Shen, L., Shen, M., Tan, F., Qiu, C.S.: Deep learning based early stage diabetic retinopathy detection using optical coherence tomography. Neurocomputing 369, 134–144 (2019)

    Article  Google Scholar 

  13. Ghazal, M., Samr, S.A., Ali, H.M., Ahmed, M.S., Ayman, E.-B.: Accurate detection of non-proliferative diabetic retinopathy in optical coherence tomography images using convolutional neural networks. IEEE Access 8, 34387–34397 (2020)

    Article  Google Scholar 

  14. Battineni, G., Getu, G.S., Nalini, C., Francesco, A., Daniele, T., Seyed, K.T.: Impact of obesity-induced inflammation on cardiovascular diseases (CVD). Int. J. Mol. Sci. 22(9), 4798 (2021)

    Article  Google Scholar 

  15. Liu, M., Goldman, G., MacDougall, M., Chen, S.: BMP signaling pathway in dentin development and diseases. Cells 11(14), 2216 (2022)

    Article  Google Scholar 

  16. Mauricio, D., Alonso, N., Gratacòs, M.: Chronic diabetes complications: the need to move beyond classical concepts. Trends Endocrinol. Metab. 31(4), 287–295 (2020)

    Article  Google Scholar 

  17. Chang, J., Ahryoung, K., Sang, M.P., Seulggie, C., Kyuwoong, K., Sung, M.K., Jae, M.Y., et al.: Association of cardiovascular mortality and deep learning-funduscopic atherosclerosis score derived from retinal fundus images. Am. J. Ophthalmol. 217, 121–130 (2020)

    Article  Google Scholar 

  18. Ting, D.S.W., Lily, P., Avinash, V.V., Pearse, A.K., Philippe, M.B., Michael, F.C., Leopold, S., et al.: Deep learning in ophthalmology: the technical and clinical considerations. Prog. Retin. Eye Res. 72, 100759 (2019)

    Article  Google Scholar 

  19. Liu, L., Cheng, J., Quan, Q., Fang-Xiang, Wu., Wang, Y.-P., Wang, J.: A survey on U-shaped networks in medical image segmentations. Neurocomputing 409, 244–258 (2020)

    Article  Google Scholar 

  20. Alaguselvi, R., Murugan, K.: Quantitative analysis of fundus image enhancement in the detection of diabetic retinopathy using deep convolutional neural network. IETE J. Res. 1–11 (2021). Soomro, T.A., Gao, J., Khan, T., Hani, A.F.M., Khan, M.A., Paul, M.: Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey. Pattern Anal. Appl. 20(4), 927–961 (2017)

  21. Soomro, T.A., Gao, J., Khan, T., Hani, A.F.M., Khan, M.A., Paul, M.: Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: a survey. Pattern Anal. Appl. 20(4), 927–961 (2017)

    Article  MathSciNet  Google Scholar 

  22. Karkuzhali, S., Manimegalai, D.: Distinguising proof of diabetic retinopathy detection by hybrid approaches in two dimensional retinal fundus images. J. Med. Syst. 43(6), 173 (2019)

    Article  Google Scholar 

  23. Motta, D., Casaca, W., Paiva, A.: Vessel optimal transport for automated alignment of retinal fundus images. IEEE Trans. Image Process. 28(12), 6154–6168 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chai, Y., Liu, H., Xu, J.: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images. Appl. Soft Comput. 86, 105890 (2020)

    Article  Google Scholar 

  25. Ramani, R.G., Shanthamalar, J.J.: Improved image processing techniques for optic disc segmentation in retinal fundus images. Biomed. Signal Process. Control 58, 101832 (2020)

    Article  Google Scholar 

  26. Hervella, Á.S., Rouco, J., Novo, J., Penedo, M.G., Ortega, M.: Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images. Comput. Methods Programs Biomed. 186, 105201 (2020)

    Article  Google Scholar 

  27. Rajan, S.P.: Recognition of cardiovascular diseases through retinal images using optic cup to optic disc ratio. Pattern Recognit. Image Anal. 30(2), 256–263 (2020)

    Article  Google Scholar 

  28. Pruthi, J., Khanna, K., Arora, S.: Optic Cup segmentation from retinal fundus images using Glowworm Swarm Optimization for glaucoma detection. Biomed. Signal Process. Control 60, 102004 (2020)

    Article  Google Scholar 

  29. Islam, M.M., Yang, H.C., Poly, T.N., Jian, W.S., Li, Y.C.J.: Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: a systematic review and meta-analysis. Comput. Methods Prog. Biomed. 191, 105320 (2020)

    Article  Google Scholar 

  30. Murugan, R., Roy, P., Singh, U.: An abnormality detection of retinal fundus images by deep convolutional neural networks. Multim. Tools Appl. 1–19 (2020)

  31. Gharaibeh, N., Al-Hazaimeh, O.M., Al-Naami, B., Nahar, K.M.: An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. Int. J. Signal Imaging Syst. Eng. 11(4), 206–216 (2018)

    Article  Google Scholar 

  32. Malik, F.H., Batool, F., Rubab, A., Chaudhary, N.A., Khan, K.B., Qureshi, M.A.: November. Retinal disorder as a biomarker for detection of human diseases. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6. IEEE (2020)

  33. Misaghi, M., Yaghoobi, M.: Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller. J. Comput. Des. Eng. 6(3), 284–295 (2019)

    Google Scholar 

  34. Alzaidi, K.M.S., Oguz, B., Osman, N.U.: Multiple DGs for reducing total power losses in radial distribution systems using hybrid WOA-SSA algorithm. Int. J. Photoenergy 2019 (2019)

  35. Ibrahim, R.A., Ewees, A.A., Oliva, D., AbdElaziz, M., Lu, S.: Improved salp swarm algorithm based on particle swarm optimization for feature selection. J. Ambient. Intell. Humaniz. Comput. 10(8), 3155–3169 (2019)

    Article  Google Scholar 

  36. Tubishat, M., Idris, N., Shuib, L., Abushariah, M.A., Mirjalili, S.: Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst. Appl. 145, 113122 (2020)

    Article  Google Scholar 

  37. Sahlol, A.T., Kollmannsberger, P., Ewees, A.A.: Efficient classification of white blood cell leukemia with improved Swarm optimization of deep features. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  38. Faris, H., Mirjalili, S., Aljarah, I., Mafarja, M., Heidari, A.A.: Salp swarm algorithm: theory, literature review, and application in extreme learning machines. In: Nature-Inspired Optimizers, pp. 185–199. Springer, Cham (2020)

  39. Faris, H., Mafarja, M.M., Heidari, A.A., Aljarah, I., Ala’M, A.Z., Mirjalili, S., Fujita, H.: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl. Based Syst. 154, 43–67 (2018)

    Article  Google Scholar 

  40. Sayed, G.I., Khoriba, G., Haggag, M.H.: A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl. Intell. 48(10), 3462–3481 (2018)

    Article  Google Scholar 

  41. Patnana, N., Pattnaik, S., Singh, V.P.: Salp swarm optimization based controller design for photovoltaic reverse osmosis plant. J. Inf. Optim. Sci. 41(2), 651–659 (2020)

    Google Scholar 

  42. Barshandeh, S., Haghzadeh, M.: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems. Eng. Comput. 1–44 (2020)

  43. Fu, Y., Li, Z., Qu, C., Chen, H. Modified atom search optimization based on immunologic mechanism and reinforcement learning. Math. Probl. Eng. 2020 (2020)

  44. Vaes, A.W., Spruit, M.A., Theunis, J., Goswami, N., Vanfleteren, L.E., Franssen, F.M., Wouters, E.F., De Boever, P.: Looking into the eye of patients with chronic obstructive pulmonary disease: an opportunity for better microvascular profiling of these complex patients. Acta Ophthalmol. 96(6), 539–549 (2018)

    Article  Google Scholar 

  45. https://www.kaggle.com/datasets/nguyenhung1903/diaretdb1-v21. Accessed Nov 2020

  46. https://www.kaggle.com/datasets/agaldran/eyepacs. Accessed Nov 2020

  47. http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html. Accessed Nov 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kavitha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, M. MDP-HML: an efficient detection method for multiple human disease using retinal fundus images based on hybrid learning techniques. Multimedia Systems 29, 961–979 (2023). https://doi.org/10.1007/s00530-022-01029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-022-01029-y

Keywords

Navigation