Reconstruction of occluded ROI in multi-person gait based on numerical methods | Multimedia Systems Skip to main content
Log in

Reconstruction of occluded ROI in multi-person gait based on numerical methods

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Occlusion is an important factor for analysis of human gait recognition in real-time scenarios. In multi-person gait (MPG) or dynamic occlusion, gait recognition is affected due to occluded body parts known as region of interests (ROIs). The aim of this article is to reconstruct the occluded ROIs and measure the errors associated with the reconstruction methods. The contribution of this article is threefold: firstly, we segment five dynamic ROIs; secondly, reconstruction of ROIs using Lagrange, piecewise cubic hermite (PCH) and cubic spline and thirdly, a comparison among the above methods in MPG scenario. We consider the human body into two parts, i.e., lower and upper body. In lower body, we have considered ankle, while knee in upper body: wrist, elbow, and shoulder have been considered. The dataset used in this study consists of dynamic occlusion scenarios. The quantitative assessment of the above methods are based on four parameters such as mean square error, root mean square error, mean absolute error and mean absolute percentage error. Results show that PCH consistently outperforms the other methods in the reconstruction of occluded ROIs in MPG scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kale, A., Sundaresan, A., Rajagopalan, A.N.: Identification of humans using gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004). https://doi.org/10.1109/tip.2004.832865

    Article  Google Scholar 

  2. Lee, T.K.M., Belkhatir, M., Sanei, S.: A comprehensive review of past and present vision-based techniques for gait recognition. Multimed. Tools Appl. 72(3), 2833–2869 (2014). https://doi.org/10.1007/s11042-013-1574-x

    Article  Google Scholar 

  3. Wang, Liang, Tan, Tieniu, Weiming, Hu, Ning, Huazhong: Automatic gait recognition based on statistical shape analysis. IEEE Trans. Image Process. 12(9), 1120–1131 (2003). https://doi.org/10.1109/TIP.2003.815251

    Article  MathSciNet  Google Scholar 

  4. Nixon, M.S., Carter, J.N.: Automatic recognition by gait. Proc. IEEE (2006). https://doi.org/10.1109/jproc.2006.886018

    Article  MATH  Google Scholar 

  5. Zeng, Wei, Wang, Cong, Li, Yuanqing: Model-based human gait recognition via deterministic learning. Cognit. Comput. 6(2), 218–229 (2014). https://doi.org/10.1007/s12559-013-9221-4

    Article  Google Scholar 

  6. Yoo, J.-H., Hwang, D., Moon, K.-Y., Nixon, M.S.: Automated human recognition by gait using neural network. In: First Workshops on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2008)

  7. Yoo, Jang-Hee, Nixon, Mark S.: Automated markerless analysis of human gait motion for recognition and classification. ETRI J. 33(2), 259–266 (2011)

    Article  Google Scholar 

  8. Bouchrika, I.: Parametric elliptic Fourier descriptors for automated extraction of gait features for people identification. In: 12th International Symposium on Programming and Systems (ISPS), pp. 1–7 (2015)

  9. Choudhury, S.D., Tjahjadi, T.: Clothing and carrying condition invariant gait recognition based on rotation forest. Pattern Recognit. Lett. 80, 1–7 (2016). https://doi.org/10.1016/j.patrec.2016.05.009

    Article  Google Scholar 

  10. Jia, S., Wang, L., Li, X.: View-invariant gait authentication based on silhouette contours analysis and view estimation. IEEE/CAA J. Autom. Sin. 2(2), 226–232 (2015). https://doi.org/10.1109/jas.2015.7081662

    Article  MathSciNet  Google Scholar 

  11. Ji, Ning, Sanchez, Victor, Li, Chang-Tsun: On view-invariant gait recognition: a feature selection solution. IET Biom. 7(4), 287–295 (2018). https://doi.org/10.1049/iet-bmt.2017.0151

    Article  Google Scholar 

  12. Sharma, H., Grover, J.: Human identification based on gait recognition for multiple view angles. Int. J. Intell. Robot. Appl. (2018). https://doi.org/10.1007/s41315-018-0061-y

    Article  Google Scholar 

  13. Li, Xiang, Makihara, Yasushi, Chi, Xu, Muramatsu, Daigo, Yagi, Yasushi, Ren, Mingwu: Gait energy response functions for gait recognition against various clothing and carrying status. Appl. Sci. 8(8), 1380 (2018). https://doi.org/10.3390/app8081380

    Article  Google Scholar 

  14. Yu, S., Chen, H., Wang, Q., Shen, L., Huang, Y.: Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 239, 81–93 (2017). https://doi.org/10.1016/j.neucom.2017.02.006

    Article  Google Scholar 

  15. Hofman, M., Sural, S., Rigoll, G.: Gait recognition in the presence of occlusion: a new dataset and baseline algorithms. In: Proceedings of the 19th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 99–104 (2011)

  16. Roy, A., Sural, S., Mukherjee, J., Rigoll, G.: Occlusion detection and gait silhouette reconstruction from degraded scenes. Signal Image Video Process. 5(4), 415–430 (2011). https://doi.org/10.1007/s11760-011-0245-5

    Article  Google Scholar 

  17. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 10(4), 1–14 (2018)

    Google Scholar 

  18. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR), pp. 441–444 (2006)

  19. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanID gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005). https://doi.org/10.1109/TPAMI.2005.39

    Article  Google Scholar 

  20. Singh, J.P., Jain, S., Arora, S., Singh, U.P.: Vision-based gait recognition: a survey. IEEE Access 6, 70497–70527 (2018). https://doi.org/10.1109/access.2018.2879896

    Article  Google Scholar 

  21. Chen, X., Weng, J., Lu, W., Xu, J.: Multi-gait recognition based on attribute discovery. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1697–1710 (2017). https://doi.org/10.1109/tpami.2017.2726061

    Article  Google Scholar 

  22. Tafazzoli, Faezeh, Safabakhsh, Reza: Model-based human gait recognition using leg and arm movements. Eng. Appl. Artif. Intell. 23(8), 1237–1246 (2010)

    Article  Google Scholar 

  23. Singh, J.P., Jain, S., Arora, S., Singh, U.P.: Dataset for human recognition under multi-gait scenario. Mendeley Data (2019). https://doi.org/10.17632/py4zw6g7xc.2

    Article  Google Scholar 

  24. Lishani, A.O., Boubchir, L., Khalifa, E., Bouridane, A.: Human gait recognition based on Haralick features. Signal Image Video Process. (2017). https://doi.org/10.1007/s11760-017-1066-y

    Article  Google Scholar 

  25. Nandy, Anup, Chakraborty, Rupak, Chakraborty, Pavan: Cloth invariant gait recognition using pooled segmented statistical features. Neurocomputing 191, 117–140 (2016). https://doi.org/10.1016/j.neucom.2016.01.002

    Article  Google Scholar 

  26. Lopez-Fernandez, D., Madrid Cuevas, F.J., Carmona Poyato, A., Munoz Salinas, R., Medina Carnicer, R.: A new approach for multi-view gait recognition on unconstrained paths. J. Vis. Commun. Image Represent. 38, 396–406 (2016)

    Article  Google Scholar 

  27. Hofmann, M., Wolf, D., Rigoll, G.: Identification and reconstruction of complete gait cycles for person identification in crowded scenes. In: International Conference on Computer Vision Theory and Applications, pp. 594–597 (2011)

  28. Chattopadhyay, Pratik, Sural, Shamik, Mukherjee, Jayanta: Frontal gait recognition from occluded scenes. Pattern Recogn. Lett. 63, 9–15 (2015). https://doi.org/10.1016/j.patrec.2015.06.004

    Article  Google Scholar 

  29. Isa, W.N.M., Alam, M.J., Eswaran, C.: Gait recognition using occluded data. In: IEEE Asia Pacific Conference on Circuits and Systems, pp. 344–347 (2010)

  30. Chen, Xin, Yang, Tianqi, Xu, J.: Multi-gait identification based on multilinear analysis and multi-target tracking. Multimed. Tools Appl. 75(11), 6505–6532 (2016). https://doi.org/10.1007/s11042-015-2585-6

    Article  Google Scholar 

  31. Chen, Xin, Jiaming, Xu, Weng, Jian: Multi-gait recognition using hypergraph partition. Mach. Vis. Appl. 28(1–2), 117–127 (2017). https://doi.org/10.1007/s00138-016-0810-6

    Article  Google Scholar 

  32. Federolf, P.A.: A novel approach to solve the “missing marker problem” in marker-based motion analysis that exploits the segment coordination patterns in multi-limb motion data. PLoS ONE 8(10), 1–13 (2013). https://doi.org/10.1371/journal.pone.0078689

    Article  Google Scholar 

  33. Gloersen, O., Federolf, P.: Predicting missing marker trajectories in human motion data using marker interconnections. PLoS ONE 11(3), 1–14 (2016). https://doi.org/10.1371/journal.pone.0152616

    Article  Google Scholar 

  34. Liu, G., McMillan, L.: Estimation of missing markers in human motion capture. Vis. Comput. 22(9–11), 721–728 (2006)

    Article  Google Scholar 

  35. Aristidou, A., Cameron, J., Lasenby, J.: Real-time estimation of missing markers in human motion capture. In: 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 1343–1346 (2008). https://doi.org/10.1109/icbbe.2008.665

  36. Kharab, A., Guenther, R.B.: An Introduction to Numerical Methods A MATLAB Approach, 3rd edn, pp. 171–178. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  37. Howarth, S.J., Callaghan, J.P.: Quantitative assessment of the accuracy for three interpolation techniques in kinematic analysis of human movement. Comput. Methods Biomech. Biomed. Eng. 13(6), 847–855 (2010). https://doi.org/10.1080/10255841003664701

    Article  Google Scholar 

  38. Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). [Online] http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/ref/pchip.html. Accessed 1 Nov 2018

  39. Tang, Siyu, Andriluka, Mykhaylo, Schiele, Bernt: Detection and tracking of occluded people. Int. J. Comput. Vis. 110(1), 58–69 (2014). https://doi.org/10.1007/s11263-013-0664-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasvinder Pal Singh.

Additional information

Communicated by T. Plagemann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J.P., Jain, S., Arora, S. et al. Reconstruction of occluded ROI in multi-person gait based on numerical methods. Multimedia Systems 26, 249–266 (2020). https://doi.org/10.1007/s00530-019-00641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-019-00641-9

Keywords

Navigation