Machine learning applications in detection and diagnosis of urology cancers: a systematic literature review | Neural Computing and Applications Skip to main content

Advertisement

Log in

Machine learning applications in detection and diagnosis of urology cancers: a systematic literature review

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Deep learning integration in cancer diagnosis enhances accuracy and diagnosis speed which helps clinical decision-making and improves health outcomes. Despite all these benefits in cancer diagnosis, the present AI models in urology cancer diagnosis have not been sufficiently reviewed systematically. This paper reviews the artificial intelligence approaches used in cancer diagnosis, prediction, and treatment of urology cancer. AI models and their applications in urology subspecialties are evaluated and discussed. The Scopus, Microsoft Academic and PubMed/MEDLINE databases were searched in November 2022 using the terms “artificial intelligence”, “neural network”, “machine learning,” or “deep learning” combined with the phrase “urology cancers”. The search was limited to publications published within the previous 20 years to identify cutting-edge deep-learning applications published in English. Irrelevant review articles and publications were eliminated. The included research involves two kinds of research analysis: quantitative and qualitative. 48 articles were included in this survey. 25 studies proposed several approaches for prostate cancers, while 15 were for bladder cancers. 8 studies discussed renal cell carcinoma and kidney cancer. The models presented to detect urology cancers have achieved high detection accuracy (77–95%). Deep learning approaches that use convolutional neural networks have achieved the highest accuracy among other techniques. Although it is still progressing, the development of AI models for urology cancer detection, prediction, and therapy has shown significant promise. Additional research is required to employ more extensive, higher-quality, and more recent datasets to the clinical performance of the proposed AI models in urology cancer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data is available on request from the authors.

References

  1. NIH (2021) Home American cancer society–cancer facts statistics. [Online] Available: https://cancerstatisticscenter.cancer.org/?_ga=2.191090925.69577. 2 Jan 2837.1589031645-278983135.1589031645#!/

  2. Fass L (2008) Imaging and cancer: a review. Mol Oncol 2:115–152

    PubMed  PubMed Central  Google Scholar 

  3. Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Gr 31:198–211

    Google Scholar 

  4. Suarez-Ibarrola R, Basulto-Martinez M, Heinze A, Gratzke C, Miernik A (2018) Radiomics applications in renal tumor assessment: a comprehensive review of the literature. Cancers (Basel) 12(6):3–17

    Google Scholar 

  5. Erak E, Oliveira LD, Mendes AA, Dairo O, Ertunc O, Kulac I, Baena-Del Valle JA, Jones T, Hicks JL, Glavaris S, Guner G, Vidal ID, Markowski M, d. l. Calle (2023) Predicting prostate cancer molecular subtype with deep learning on histopathologic images. Mod Pathol 36(10):0893–3952

    Google Scholar 

  6. Hamm CA, Baumgärtner GL, Biessmann F, Beetz NL, Hartenstein A, Savic LJ, Froböse K, Dräger F, Schallenberg S, Rudolph M, Baur ADJ, Hamm B, Haas M, Hofbauer S (2023) Interactive explainable deep learning model informs prostate cancer diagnosis at MRI. Radiol Soc North Am 307(4):e222276

    Google Scholar 

  7. N. W. T. C. M. L. B. Xu (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint. 1505.00853

  8. Pacal I, Karaboga D, Basturk A, Akay B, Nalbantoglu U (2020) A comprehensive review of deep learning in colon cancer. Comput Biol Med 126(104003):0010–4825

    Google Scholar 

  9. Kim J-E, Nam N-E, Shim J-S, Jung Y-H, Cho B-H, Hwang J (2020) Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J Clin Med 9(4):1117

    PubMed  PubMed Central  Google Scholar 

  10. Yulian Z, Wang L, Mingxia L, Chunjun Q, Ambereen Y, Aytekin O, Dinggang S (2017) MRI-based prostate cancer detection with high-level representation and hierarchical classification. Am Assoc Phys Med 44(3):1028–1039

    Google Scholar 

  11. Baghdadi A, Aldhaam NA, Elsayed AS, Hussein AA, Cavuoto LA, Kauffman E, Guru KA (2020) Automated differentiation of benign renal oncocytoma and chromophobe renal cell carcinoma on computed tomography using deep learning. BJU int 125(4):553–560

    CAS  PubMed  Google Scholar 

  12. Tanaka T, Huang Y, Marukawa Y, Tsuboi Y, Masaoka Y, Kojima K, Iguchi T, Hiraki T, Gobara H, Yanai H, Nasu Y, Kanazawa S (2020) Differentiation of small (≤ 4 cm) renal masses on multiphase contrast-enhanced CT by deep learning. Am J Roentgenol 214(3):3–11

    Google Scholar 

  13. Leyh-Bannurah S-R, Tian Z, Karakiewicz PI, Wolffgang U, Sauter G, Fisch M, Pehrke D, Huland H, Graefen M, Budäus L (2018) Deep learning for natural language processing in urology: state-of-the-art automated extraction of detailed pathologic prostate cancer data from narratively written electronic health records. JCO Clin Cancer Inform 2:1–9

    PubMed  Google Scholar 

  14. Wang X, Guo J, Gu D, Yang Y, Yang X, Zhu K (2019) Tracking knowledge evolution, hotspots and future directions of emerging technologies in cancers research: a bibliometrics review. J Cancer 10(12):2643

    PubMed  PubMed Central  Google Scholar 

  15. Singhal N, Soni S, Bonthu S, Chattopadhyay N, Samanta P, Joshi U, Jojera A, Chharchhodawala T, Agarwal A, Desai M, Ganpule A (2022) A deep learning system for prostate cancer diagnosis and grading in whole slide images of core needle biopsies. Sci Rep 12:3383

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bulten W, Litjens G, Pinckaers H, Ström P, Eklund M, Kartasalo K Demkin M, Dane S (2020) The PANDA challenge: prostate cANcer graDe assessment using the gleason grading system. In: 23rd international conference on medical image computing and computer assisted intervention (MICCAI 2020)

  17. Lin F, Ma C, Xu J, Lei Y, Li Q, Lan Y, Sun M, Long W, Cui E (2020) A CT-based deep learning model for predicting the nuclear grade of clear cell renal cell carcinoma. Eur J Radiol 129:1–15

    Google Scholar 

  18. Park JS, Lee HJ, Cho NH, Kim J, Jang WS, Heo JE, Ham WS (2019) "Risk prediction tool for aggressive tumors in clinical T1 stage clear cell renal cell carcinoma using molecular biomarkers. Comput Struct Biotechnol J 17:371–377

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Okyaz E, Nurettin E, Axel S, Bernhard B (2018) Diagnostic classification of cystoscopic images using deep convolutional neural networks. JCO Clin Cancer Inform 2:1–8

    Google Scholar 

  20. Atsushi I, Hirokazu N, Kochi, Hiroyuki N, Hidenori S (2018) Objective evaluation for the cystoscopic diagnosis of bladder cancer using artificial intelligence. European Urology Supplements. e1230–e1231

  21. Shkolyar E, Jia X, Xing L, Liao J (2019) Automated cystoscopic detection of bladder cancer using deep-Learning. J Urol. https://doi.org/10.1097/01.JU.0000557512.76700.42

    Article  Google Scholar 

  22. Atsushi I, Hirokazu N, Yuta K, Hiromitsu N, Takahiro K, Hidenori S, Masahiro M, Hiroyuki N (2020) Cystoscopic imaging for bladder cancer detection based on stepwise organic transfer learning with a pretrained convolutional neural network. J endourol. https://doi.org/10.1089/end.2020.0919

    Article  Google Scholar 

  23. Eric W, Lubomir M, Ravi K, Heang-Ping C, Kenny H, Caleb R, Richard H, Elaine M, Chintana P, Ajjai A, Alon Z (2019) Deep Learning approach for assessment of bladder cancer treatment response,". Tomography 5(201):8. https://doi.org/10.18383/j.tom.2018.00036

    Article  Google Scholar 

  24. Kenny H, Lubomir M, Richard H, Heang-Ping C, Elaine M, Matthew S, Ravi K, Alon Z, Ajjai A, Galina K-N, Kimberly S, Nathaniel M, Daniel B, Sean W, Prasad R, Isaac R (2019) Diagnostic accuracy of CT for prediction of bladder cancer treatment response with and without computerized decision support. Acad Radiol 26(9):1137–1145. https://doi.org/10.1016/j.acra.2018.10.010

    Article  Google Scholar 

  25. Takumi T, Mami H-K, Yumiko O, Satoshi I, Koji M (2019) Prediction of prostate cancer by deep learning with multilayer artificial neural network. Can Urol Assoc 13(5):E145–E150. https://doi.org/10.5489/cuaj.5526

    Article  Google Scholar 

  26. Andrew J, Jian C, Saum G, Paul J, Zequn L, Jessica N, Sanjay P, Inderbir S, Yan L (2019) A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int 124(3):487–495. https://doi.org/10.1111/bju.14735

    Article  Google Scholar 

  27. Junichiro I, Yoh M, Sho U, Yosuke Y, Toshiki K, Soichiro Y, Minato Y, Kazutaka S, Kazunori K, Noboru N, Tomo K, Kosei K, Itsuo K, Yasuhisa F (2018) “Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm.” BJU int 122(3):411–417

    Google Scholar 

  28. Ma L, Guo R, Zhang G, Tade F, Schuster DM, Nieh P, Master V, Fei B (2017) Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion. Med Imaging: Image Processing 10133:760–768

    Google Scholar 

  29. Oberai A, Varghese B, Cen S, Angelini T, Hwang D, Gill I, Aron M, Lau C, Duddalwar V (2020) "Deep learning based classification of solid lipid-poor contrast enhancing renal masses using contrast enhanced CT. The Br J Radiol 93:11–31

    Google Scholar 

  30. Cha KH, Hadjiiski L, Chan H-P, Weizer AZ, Alva A, Cohan RH, Caoili EM, Paramagul C, Samala RK (2017) Bladder cancer treatment response assessment in CT using radiomics with deep-learning. Sci Rep 7(1):8738

    ADS  PubMed  PubMed Central  Google Scholar 

  31. Lucas M, Liem EI, Savci-Heijink CD, Freund JE, Marquering HA, van Leeuwen TG, de Bruin DM (2019) Toward automated in vivo bladder tumor stratification using confocal laser. J Endurol 33(11):930–937

    Google Scholar 

  32. Cha KH, Hadjiiski LM, Samala RK, Chan H-P, Cohan RH, Caoili EM, Paramagul C, Alva A, Weizer AZ (2016) Bladder cancer segmentation in CT for treatment response assessment: application of deep-learning convolution neural network: a pilot study. Tomography 2(4):421–429

    PubMed  PubMed Central  Google Scholar 

  33. Harmon SA, Sanford TH, Brown T, Yang C, Mehralivand S, Jacob JM, Valera VA, Shih JH, Agarwal PK, Choyke PL, Turkbey B (2020) Multiresolution application of artificial intelligence in digital pathology for prediction of positive lymph nodes from primary tumors in bladder cancer. Orig Rep 4:367–382

    Google Scholar 

  34. Hadjiiski LM, Cha KH, Cohan RH, Chan H-P, Caoili EM, Davenport MS, Samala RK, Weizer AZ, Alva A, Kirova-Nedyalkova G, Shampain K, Meyer N, Barkmeier D, Woolen SA, Shankar PR (2020) Intraobserver variability in bladder cancer treatment response assessment with and without computerized decision support. TomoGraphy 6(2):194–202

    PubMed  PubMed Central  Google Scholar 

  35. Ilaria J, Marit L, Judith B, Onno J, Sybren L, Ton G, Henk A, Jakko A, Daniel M (2020) Automated detection and grading of non-muscle-invasive urothelial cell carcinoma. Am J Pathol 190(7):1483–1490

    Google Scholar 

  36. Wu E, Hadjiiski LM, Samala RK, Chan HP, Cha KH, Richter C, Cohan RH, Caoili EM, Paramagul C, Alva A, Weizer AZ (2019) Deep learning approach for assessment of bladder cancer treatment response. TomoGraphy 5(1):201–208

    PubMed  PubMed Central  Google Scholar 

  37. Cha KH, Hadjiiski LM, Cohan RH, Chan HP, Caoili EM, Davenport MS, Samala RK, Weizer AZ, Alva A, Kirova-Nedyalkova G, Shampain K (2019) Diagnostic accuracy of CT for prediction of bladder cancer treatment response with and without computerized decision support. Acad Radiol 26(9):1137–1145

    PubMed  Google Scholar 

  38. Atsushi I, Hirokazu N, Yuta K, Takahiro K, Koji K, Hidenori S, Masahiro M, Hiroyuki N (2020) Support system of cystoscopic diagnosis for bladder cancer based on artificial. J Endurol 34(3):352–358

    Google Scholar 

  39. Alexander U, Michelle B, Justin G-B, Edward U, Chanon C, Michael N, Daniel C, Peter D, Roozbeh H (2020) A 3D/2D Hybrid U-Net CNN approach to prostate organ segmentation of mpMRI. Am J Roentgenol 216(1):111–116

    Google Scholar 

  40. dBJ and WA (2020) “Deep learning in MIBC” Research Hihglights

  41. Eirini A, Kim S, Michael M, Niels R, Thomas H, Christian F, Norbert W, Peter J, Jan H, Manfred C (2018) Automated gleason grading of prostate cancer tissue microarrays via deep learning. Sci Rep 8(1):1–11

    Google Scholar 

  42. Ke Y, Xiuying W, Jinman K, Mohamed K, Michael F, Dagan F (2019) A propagation-DNN: deep combination learning of multi-level features for MR prostate segmentation. Comput Methods Progr Biomed 170:11–21

    Google Scholar 

  43. Patrick S, Simon K, Jan P, Manuel W, Philipp K, Sebastian B, Tristan A, Albrecht S, Markus H, Heinz-Peter S, Klaus H-H, David B (2019) Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment. Radiology 293(3):607–617

    Google Scholar 

  44. Reda I, Shalaby A, Elmogy M, Elfotouh AA, Khalifa F, El-Ghar MA, Hosseini-Asl E, Gimel’farb G, Werghi N, El-Baz A (2017) A comprehensive non-invasive framework for diagnosing prostate cancer. Comput Biol Med 81:148–158

    PubMed  Google Scholar 

  45. Rubinstein E, Salhov M, Nidam-Leshem M, White V, Golan S, Baniel J, Bernstine H, Groshar D, Averbuch A (2019) Unsupervised tumor detection in dynamic PET/CT imaging of the prostate. Med Image Anal 55:27–40

    PubMed  Google Scholar 

  46. Thomas S, Stephanie A, Evrim B, Deepak K, Sena T, Manuel M, Chris Y, Jonathan S, Sherif M, Pingkun Y, Sheng X, Bradford J, Maria J, Peter A, Peter L, Baris T (2020) Deep-learning-based artificial intelligence for PI-RADS classification to assist multiparametric prostate MRI interpretation: a development study. J Magn Reson Imaging 52(5):1499–1507

    Google Scholar 

  47. Jun A, Yoichiro Y, Tetsuro S, Yasushi N, Hiromu M, Kotaro T, Masato Y, Yuki E, Hayato T, Tatsuro H, Masao U, Gen T, Ichiro M, Manabu F, Akira S, Toyonori T, Go K (2019) illuminating clues of cancer buried in prostate MR image: deep learning and expert approaches. Biomolecules 9(11):673

    Google Scholar 

  48. Satheesh K, Krishna S, Nicola S, Fernando M, Benhabib H, Girish K, Matthew D, Ronaldo H (2020) Role of MRI in staging of penile cancer. J Magn Reson Imaging 51(6):1612–1629

    Google Scholar 

  49. Yang G, Wang C, Yang J, Chen Y, Tang L, Shao P, Dillenseger J-L, Shu H, Luo L (2020) Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal CTA images. BMC Med Imaging 20:20–37

    Google Scholar 

  50. Guanyu Y, Chuanxia W, Jian Y, Yang C, Lijun T, Pengfei S, Jean-Louis D, Huazhong S, Limin L (2020) Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal CTA images. BMC med imaging 20:11–37

    Google Scholar 

  51. Prathamesh M, Eric J, Jaya S, Robyn D-C, Bethany R, Megan H, Larisa J, Harriet M, Pok F, Balazs A, Emanuelle M, Chen Y, Manas M, Michael R (2020) Deep learning based on standard H&E images of primary melanoma tumors identifies patients at risk for visceral recurrence and death. Clin Cancer Res 26(5):1126–1134

    Google Scholar 

  52. Lindgren S, May S, Reza K, Olof E, Johannes U, Mads H, Jane S, Poul F-C, Lars E, Elin T (2019) Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol 113:89–95

    Google Scholar 

  53. Ruud J, Rogier R, Christophe K, Arnoud W, Maudy G, Harrie P, Georg S, Hessel W, Massimo M (2019) Deep learning for real-time, automatic, and scanner-adapted prostate (zone) segmentation of transrectal ultrasound, for example, magnetic resonance imaging–transrectal ultrasound fusion prostate biopsy. Eur urol focus 7(1):78–85

    Google Scholar 

  54. Arif M, Ivo G, Jose C, Chris H, Gabriel P, Monique J, Wiro N (2020) Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI. Eur Radiol. https://doi.org/10.1007/s00330-020-07008-z

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jae K, Mun J, Jong S, Jun H, Choung-Soo K, Seong I, Chang W, Seok-Soo B, Kyo C, Byung H, Yong H, Ji Y (2018) A Deep belief network and dempster-shafer-based multiclassifier for the pathology stage of prostate cancer. J Healthc Eng. https://doi.org/10.1155/2018/4651582

    Article  Google Scholar 

  56. Lucas M, Jansen I, Savci-Heijink CD, Meijer SL, de Boer OJ, van Leeuwen TG, de Bruin DM, Marquering HA (2019) Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. Virchows Arch 475:77–83

    PubMed  PubMed Central  Google Scholar 

  57. Eirini P, May S, Reza K, Pablo B, Olof E, Johannes U, Mattias O, Elin T, Mads H, Jane A, Poul F-C, Åse A, Lars E (2019) Deep learning-based quantification of PET/CT prostate gland uptake: association with overall survival. Wiley

    Google Scholar 

  58. Ohad K, Drew L, Ali A, Andreas K, Carleen J, Dragan G, Thomas S, Boris G (2019) Development of a deep learning algorithm for the histopathologic diagnosis and gleason grading of prostate cancer biopsies: a pilot study. Eur Urol Focus. https://doi.org/10.1016/j.euf.2019.11.003

    Article  Google Scholar 

  59. Yoichiro Y, Toyonori T, Jun A, Masao U, Hiromu M, Yasushi N, Taishi T, Takuji T, Kotaro T, Ryuto N, Akira S, Ichiro M, Shinichi T, Hiroyuki K, Yukihiro K (2019) Automated acquisition of explainable knowledge from unannotated histopathology images. Nat Commun 10(1):1–9

    Google Scholar 

  60. Amogh H, Rakesh S, Harri M, Prateek P, Otto E, Pekka T, Hannu J, Peter J, Ivan J, Anant M (2020) Test-retest repeatability of a deep learning architecture in detecting and segmenting clinically significant prostate cancer on apparent diffusion coefficient (ADC) maps. Eur Radiol. https://doi.org/10.1007/s00330-020-07065-4

    Article  Google Scholar 

  61. Patrick S, Xianfeng W, Jan P, Manuel W, Philipp K, Albrecht S, Markus H, Heinz-Peter S, Klaus H-H (2020) Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI assessment. Eur radiol 31:1–12

    Google Scholar 

  62. Ström P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney D, Bostwick D, Evans A, Grignon D, Humphrey P, Iczkowski K (2020) Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol 21(2):222–232

    PubMed  Google Scholar 

  63. Zhang H, Ji J, Liu Z, Lu H, Qian C, Wei C, Chen S, Lu W, Wang C, Xu H, Xu Y (2023) Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: a multicenter study. BMC Med 21(1):270

    PubMed  PubMed Central  Google Scholar 

  64. Bashashati A, Goldenberg S (2022) AI for prostate cancer diagnosis: hype or today’s reality? Nature Rev Urol 19(5):261–262

    Google Scholar 

  65. Bulten WEA (2022) Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Med 28:154–163

    CAS  PubMed  Google Scholar 

  66. Rho M, Park J, Moon H, Kim C, Jeon S, Kang M, Lee J (2022) Dr. Answer AI for prostate cancer: intention to use, expected effects, performance, and concerns of urologists. Prostate Int 10(1):38–44

    PubMed  Google Scholar 

  67. Rodrigo S-I, Simon H, Gerd R, Christian G, Arkadiusz M (2020) Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer. World J Urol 38(10):2329–2347. https://doi.org/10.1007/s00345-019-03000-5

    Article  Google Scholar 

  68. Milap S, Nithesh N, Bhaskar S, H. BM, (2020) Artificial intelligence (AI) in urology-current use and future directions: An iTRUE study. Turk J Urol 46:27–39. https://doi.org/10.5152/tud.2020.20117

    Article  Google Scholar 

  69. Misgana N, Rodrigo S, Simon H, Arkadiusz M, Alexander R (2020) Application of artifcial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects. World J Urol 38:2349–2358. https://doi.org/10.1007/s00345-019-03059-0

    Article  Google Scholar 

  70. Checcucci E, Autorino R, Cacciamani GE, Amparore D, De Cillis S, Piana A, Piazzolla P, Vezzetti E, Fiori C, Veneziano D, Tewari A (2020) Artificial intelligence and neural networks in urology: current clinical applications. Minerva Urol Nefrol 72(1):49–57

    PubMed  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

ML wrote the main manuscript text, DK, AB, and BA prepared Tables 1, 2 and 3, and UN and IP prepared Figs. 2 and 3. All authors reviewed the manuscript.

Corresponding author

Correspondence to M. Lubbad.

Ethics declarations

Conflict of interest

The authors state they have no known conflicting commercial interests or personal relationships that could have influenced this article’s work.

Human and animal rights

The authors did not perform any experiments with animals for conducting this research.

Informed consent

There is not any patient data used in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubbad, M., Karaboga, D., Basturk, A. et al. Machine learning applications in detection and diagnosis of urology cancers: a systematic literature review. Neural Comput & Applic 36, 6355–6379 (2024). https://doi.org/10.1007/s00521-023-09375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09375-2

Keywords

Navigation