Modeling algal atypical proliferation in La Barca reservoir using L-SHADE optimized gradient boosted regression trees: a case study | Neural Computing and Applications
Skip to main content

Advertisement

Modeling algal atypical proliferation in La Barca reservoir using L-SHADE optimized gradient boosted regression trees: a case study

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Algal atypical proliferation is a consequence of water fertilization (also called eutrophication) and a worldwide environmental concern since water quality and its uses are seriously compromised. Prevention is the most effective measure given that once the algal proliferation starts, it is too difficult and costly to stop the process. This article presents a nonparametric machine learning algorithm that combines the gradient boosted regression tree (GBRT) model and an improved differential evolution algorithm (L-SHADE) for better understanding and control of the algal abnormal proliferation (usually estimated from Chlorophyll-a and Total Phosphorus concentrations) from physicochemical and biological variable values obtained in a northern Spain reservoir. This L-SHADE technique involves the optimization of the GBRT hyperparameters during the training process. Apart from successfully estimating algal atypical growth (coefficients of determination equal to 0.91 and 0.93 for Chlorophyll-a and Total Phosphorus concentrations were obtained, respectively), this hybrid model allows here to establish the ranking of each independent biological and physicochemical variable according to its importance in the algal enhanced growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alexandrov MH, Bloesch J (2009) Eutrophication of lake Tasaul, Romania—proposals for rehabilitation. Environ Sci Pollut R 16(1):42–45

    Article  Google Scholar 

  2. Grundy RD (1971) Strategies for control of man-made eutrophication. Environ Sci Tech 5:1184–1190

    Article  Google Scholar 

  3. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, New York

    Book  Google Scholar 

  4. Xue X, Landis A (2010) Eutrophication potential of food consumption patterns. Environ Sci Technol 44:6450–6456

    Article  Google Scholar 

  5. Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in Lake Phytoplankton. Science 221(4611):669–671

    Article  Google Scholar 

  6. Álvarez Cobelas M, Arauzo M (2006) Phytoplankton responses to varying time scales in a eutrophic reservoir. Arch Hydrobiol Ergebn Limnol 40:69–80

    Google Scholar 

  7. Liu Y, Guo H, Yu Y, Dai Y, Zhou F (2008) Ecological–economic modeling as a tool for watershed management: a case study of Lake Qionghai watershed, China. Limnologica 38(2):89–104

    Article  Google Scholar 

  8. Takaara T, Sano D, Masago Y, Omura T (2010) Surface–retained organica matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment. Water Res 44:3781–3786

    Article  Google Scholar 

  9. Texeira MR, Rosa MJ (2006) Comparing disolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: part I: the key operating conditions. Sep Purif Technol 52:84–94

    Article  Google Scholar 

  10. Gibson G, Carlson R, Simpson J, Smelzer E (2000) Nutrient criteria technical guidance manual: lakes and reservoirs. In: EPA-822-B-00-001, United States Environment Protection Agency (USEPA), Office of Water, Washington DC, USA

  11. Karydis M (2009) Eutrophication assessment of coastal waters based on indicators: a literature review. Global NEST J 11:373–390

    Google Scholar 

  12. Spatharis S, Tsirtsis G (2010) Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in Eastern Mediterranean. Ecol Indic 10(4):840–847

    Article  Google Scholar 

  13. Borja A, Dauer DM (2008) Assessing the environmental quality status in estuarine and coastal systems: comparing methodologies and indices. Ecol Indic 8:331–337

    Article  Google Scholar 

  14. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000. Establishing a framework for community action in the field of water policy, L-327, Luxembourg

  15. Hillebrand H, Dürselen C-D, Kirschtel D, Pollinger U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  16. Wang S, Jin X, Bu Q, Jiao L, Wu F (2008) Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloid Surf A 316:245–252

    Article  Google Scholar 

  17. Kitsiou D, Karydis M (2011) Coastal marine eutrophication assessment: a review on data analysis. Environ Int 37:778–801

    Article  Google Scholar 

  18. Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian waters–a review. Oceanogr Mar Biol Ann Rev 40:427–489

    Google Scholar 

  19. Charpa SC (1997) Surface water-quality modelling. McGraw-Hill, New York

    Google Scholar 

  20. Díaz RJ, Rosenberg R (2011) Introduction to environmental and economic consequences of hypoxia. Int J Water Resour Dev 27:71–82

    Article  Google Scholar 

  21. Chibole OK (2013) Modeling River Sosiani’s water quality to assess human impact on water resources at the catchment scale. Ecohydrol Hydrobiol 13:241–245

    Article  Google Scholar 

  22. Wu G, Xu Z (2011) Prediction of algal blooming using EFDC model: case study in the Daoxiang Lake. Ecol Modell 222:1245–1252

    Article  Google Scholar 

  23. Dogan E, Sengorur B, Koklu R (2009) Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manag 90:1229–1235

    Article  Google Scholar 

  24. Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality—a case study. Ecol Modell 220:888–895

    Article  Google Scholar 

  25. Hastie T, Tibshirani R, Friedman J (2016) The elements of statistical learning. Springer, New York

    MATH  Google Scholar 

  26. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth and Brooks, Monterrey

    MATH  Google Scholar 

  27. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data An 38(4):367–378

    Article  MathSciNet  MATH  Google Scholar 

  28. Schapire RE (2003) The boosting approach to machine learning an overview. In: Denison DD, Hansen MH, Holmes CC, Mallick B, Yu B (eds) Nonlinear estimation and classification, Lecture notes in statistics, Springer, Germany, vol 171, pp 149–171

  29. Bühlmann P, Hothorn T (2007) Boosting algorithms: regularization, prediction and model fitting. Stat Sci 22(4):477–505

    MathSciNet  MATH  Google Scholar 

  30. Feoktistov V (2006) Differential evolution: in search of solutions. Springer, New York

    MATH  Google Scholar 

  31. Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  32. Rocca P, Oliveri G, Massa A (2011) Differential evolution as applied to electromagnetics. IEEE Antennas Propag 53(1):38–49

    Article  Google Scholar 

  33. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  34. Landry M, Erlinger TP, Patschke D, Varrichio C (2016) Probabilistic gradient boosting machines for GEFCom2014 wind forecasting. Int J Forecasting 32(3):1061–1066

    Article  Google Scholar 

  35. Persson C, Bacher P, Shiga T, Madsen H (2017) Multi-site solar power forecasting using gradient boosted regression trees. Sol Energy 150:423–436

    Article  Google Scholar 

  36. Johnson NE, Ianiuk O, Cazap D, Liu L, Starobin D, Dobler G, Ghandehari M (2017) Patterns of waste generation: a gradient boosting model for short-term waste prediction in New York City. Waste Manage 62:3–11

    Article  Google Scholar 

  37. Xiong D, Gui Q, Hou W, Ding M (2018) Gradient boosting for single image super-resolution. Inf Sci 454–455:328–343

    Article  MathSciNet  Google Scholar 

  38. Lu H, Wang H, Yoon SW (2019) A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis. Expert Syst Applic 116:340–350

    Article  Google Scholar 

  39. Chen Z-Y, Zhang T-H, Zhang R, Zhu Z-M, Yang J, Cheng P-Y, Ou C-Q, Guo Y (2019) Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China. Atmos Environ 202:180–189

    Article  Google Scholar 

  40. Liu B, Yan S, You H, Dong Y, Li Y, Lang J, Gu R (2018) Road surface temperature prediction based on gradient extreme learning machine boosting. Comput Ind 99:294–302

    Article  Google Scholar 

  41. Simon D (2013) Evolutionary optimization algorithms. Wiley, New York

    Google Scholar 

  42. Yang X-S, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, London

    Book  Google Scholar 

  43. Fister I, Stranad D, Yang X-S, Fister I Jr. (2015) Adaptation and hybridization in nature-inspired algorithms. In: Fister I, Fister I Jr. (eds) Adaptation and hybridization in computational intelligence, vol 18. Springer, New York, pp 3–50

    Chapter  Google Scholar 

  44. Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic Press, London

    Google Scholar 

  45. Smith MJ, Shaw GR, Eaglesham GK, Ho L, Brookes JD (2008) Elucidating the factors influencing the biodegradation of cylindrospermopsin in drinking water sources. Environ Toxicol 23:413–421

    Article  Google Scholar 

  46. World Health Organization (1998) Guidelines for drinking-water quality: health criteria and other supporting information, vol 2, Geneva, World Health 408 Organization

  47. Willame R, Jurckzak T, Iffly JF, Kull T, Meriluoto J, Hoffman L (2005) Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia 551:99–117

    Article  Google Scholar 

  48. Brönmark C, Hansson L-A (2005) The biology of lakes and ponds. Oxford University Press, New York

    Google Scholar 

  49. Quesada A, Moreno E, Carrasco D, Paniagua T, Wormer L, de Hoyos C, Sukenik A (2006) Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water reservoir. Eur J Phycol 41:39–45

    Article  Google Scholar 

  50. Negro AI, de Hoyos C, Vega JC (2000) Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). Hydrobiologia 424:25–37

    Article  Google Scholar 

  51. American Public Health Association, American Water Works Association, Water Environment Federation (2005) Standard Methods for the Examination of Water and Wastewater, no. 21. APHA/AWWA/WEF, Washington

  52. France RL, Peters RH (1995) Predictive model of the effects on Lake Metabolism of decreased airborne litter fall through riparian deforestation. Conserv Biol 9(6):1578–1586

    Article  Google Scholar 

  53. Nicholls KH, Steedman RJ, Carey EC (2003) Changes in phytoplankton communities following logging in the drainage basins of three boreal forest lakes in north-western Ontario. Can J Fish Aquat Sci 60:43–54

    Article  Google Scholar 

  54. Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407

    Article  MathSciNet  MATH  Google Scholar 

  55. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  MathSciNet  MATH  Google Scholar 

  56. Mayr A, Binder H, Gefeller O, Schmid M (2014) The evolution of boosting algorithms: from machine learning to statistical modelling. Method Inform Med 6(1):419–427

    Google Scholar 

  57. Mayr A, Binder H, Gefeller O, Schmid M (2014) Extending statistical boosting: an overview of recent methodological developments. Method Inform Med 6(2):428–435

    Google Scholar 

  58. Taieb SB, Hyndman RJ (2014) A gradient boosting approach to the kaggle load forecasting competition. Int J Forecasting 30(2):382–394

    Article  Google Scholar 

  59. Döpke J, Fritsche U, Pierdzioch C (2017) Predicting recessions with boosted regression trees. Int J Forecasting 33:745–759

    Article  Google Scholar 

  60. Ridgeway G (2007) Generalized boosted models: a guide to the GBM package. http://www.saedsayad.com/docs/gbm2.pdf. Accessed 3 August 2007

  61. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, California, USA, pp 785–794

  62. Brest J, Maucec MS, Boskovic B (2017) Single objective real-parameter optimization: Algorithm jSO. In: Proceedings of the 2017 IEEE Congress on Evolutionary Computation, IEEE Publisher, Donostia-San Sebastián, Spain, pp 1311–1318

  63. Brest J, Maucec MS, Boskovic B (2016) iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation, IEEE Publisher, Vancouver, BC, Canada, pp 1188–1195

  64. Tanabe R, Fukunaga AS (2013) Evaluating the performance of SHADE on CEC 2013 benchmark problems. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, IEEE Publisher, Cancun, Mexico, pp 1952–1959

  65. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE T Evolut Comput 13(2):398–417

    Article  Google Scholar 

  66. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE T Evolut Comput 13(5):945–958

    Article  Google Scholar 

  67. Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE Publisher, Beijing, China, pp 1658–1665

  68. Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H (2016) Differential evolution with multi-population based ensemble of mutation strategies. Inform Sci 329:329–345

    Article  Google Scholar 

  69. Allman ES, Rhodes JA (2003) Mathematical models in biology: an introduction. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  70. Barnes DJ, Chu D (2010) Introduction to modeling for biosciences. Springer, New York

    Book  Google Scholar 

  71. Freedman D, Pisani R, Purves R (2007) Statistics. W.W. Norton & Company, New York

    MATH  Google Scholar 

  72. Wasserman L (2003) All of statistics: a concise course in statistical inference. Springer, New York

    MATH  Google Scholar 

  73. Bishop CM (2011) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  74. Berk RA (2016) Statistical learning from a regression perspective. Springer, Berlin

    Book  MATH  Google Scholar 

  75. Picard R, Cook D (1984) Cross-validation of regression models. J Am Stat Assoc 79(387):575–583

    Article  MathSciNet  MATH  Google Scholar 

  76. Criado Ramón D (2017) PyADE: Multiple differential evolution algorithms. https://github.com/xKuZz/pyade. Accessed 23 October 2017

  77. Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London

    Book  Google Scholar 

  78. Aboal M, Puig MA (2005) Intracellular and dissolved microcystins in reservoirs of the river Segura basin, Murcia, SE Spain. Toxicon 45(4):509–518

    Article  Google Scholar 

  79. Gault PM, Marler HJ (2009) Handbook on Cyanobacteria: biochemistry, biotechnology and applications. Nova Science Publishers, New York

    Google Scholar 

  80. Dow CS, Swoboda UK (2000) Cyanotoxins. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 613–632

    Google Scholar 

  81. Lv J, Wu H, Chen M (2011) Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 41(1):48–56

    Article  Google Scholar 

  82. Brezonik PL, Menken KD, Bauer ME (2005) Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv Manage 21:373–382

    Article  Google Scholar 

  83. Rast W, Thornton JA (2005) Phosphorus loading concept and the OECD eutrophication programme: origin, application and capabilities. In: O’Sullivan P, Reynolds CS (eds) The lakes handbook: lake restoration and rehabilitation, Blackwell Science, Oxford, UK, vol 2, pp 354–385

  84. Gadi VK, Tang Y-R, Das A, Monga C, Garg A, Berretta C, Sahoo L (2017) Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. CATENA 155:20–29

    Article  Google Scholar 

  85. Redden AM, Rukminasari N (2008) Effects of increases in salinity on phytoplankton in the Broadwater of the Myall lakes, NSW, Australia. Hydrobiologia 608:87–97

    Article  Google Scholar 

  86. Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. P Natl Acad Sci USA 105(32):11254–11258

    Article  Google Scholar 

  87. Bužančić M, Gladan ŽN, Marasović I, Kušpilić G, Grbec B (2016) Eutrophication influence on phytoplankton community composition in three bays on the eastern Adriatic coast. Oceanologia 58(4):302–316

    Article  Google Scholar 

  88. Watson SB, Whitton BA, Higgins SN, Paerl HW, Brooks BW, Wehr JD (2015) Harmful algal blooms. In: Wehr J, Sheath R, Kociolek JP (eds) Aquatic ecology, freshwater algae of North America, Academic Press, Cambridge, Massachusetts, USA, chpt 20, pp 873–920

  89. Dagenais-Bellefeuille S, Morse D (2013) Putting the N in dinoflagellates. Front Microbiol 4(369):1–14

    Google Scholar 

  90. Taylor FJR (1976) Dinoflagellates from the International Indian Ocean Expedition. Biblioth Bot 132:1–234

    Google Scholar 

  91. Rissik D, van Senden D, Doherty M, Ingleton T, Ajani P, Bowling L, Gibbs M, Gladstone M, Kobayashi T, Suthers I, Froneman W (2009) Plankton-related environmental and water-quality issues. In: Suthers IM, Rissik D (eds) Plankton: a guide to their ecology and monitoring for water quality, CSIRO Publishing, Melbourne, Australia, chpt 3, pp 39–72

  92. Ortega-Mayagoitia E, Rojo C (2000) Fitoplancton del Parque Nacional Las Tablas de Daimiel. III. Diatomeas y clorofitas. Anal Jardin Bot Mad 58(1):17–37

    Google Scholar 

  93. Pérez-Martínez C, Sánchez-Castillo P (2004) Temporal occurrence of Ceratium hirundinella in Spanish reservoirs. Hydrobiologia 452:101–107

    Article  Google Scholar 

  94. Bogard MJ, Vogt RJ, Haye NM, Leavitt PR (2020) Unabated nitrogen pollution favors growth of toxic Cyanobacteria over Chlorophytes in most hypereutrophic lakes. Environ Sci Technol 54(6):3219–3227

    Article  Google Scholar 

  95. Arend KK, Betelsky D, DePinto JV, Ludsin SA, Roberts JJ, Rucinski DK, Scavia D, Schwab DJ, Hook TO (2011) Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshwater Biol 56:366–383

    Article  Google Scholar 

  96. Huang Y, Chen M (2013) Variation of dissolved oxygen in the experiments of occurrence & disappearance for Microcystis bloom. Procedia Environ Sci 18:559–566

    Article  Google Scholar 

  97. Fields S (2004) Global nitrogen: cycling out of control. Environ Health Persp 112(10):A556–A563

    Article  Google Scholar 

  98. Zhan X, Bo Y, Zhou F, Liu X, Paerl HW, Shen J, Wang R, Li F, Tao S, Dong Y, Tang X (2017) Evidence for the importance of atmospheric nitrogen deposition to eutrophic lake Dianchi, China. Environ Sci Technol 51(12):6699–6708

    Article  Google Scholar 

  99. Zeeb BA, Christie CE, Smol JP, Findlay DL, Kling HJ, Birks HJB (1994) Responses of diatom and Chrysophyte assemblages in Lake 227 sediments to experimental eutrophication. Can J Fish Aquat Sci 51(10):2300–2311

    Article  Google Scholar 

  100. Ortega-Mayagoitia E, Rojo C (1999) Phytoplankton from the Daimiel National. Park II. Cyanophytes, dinoflagellates, cryptophytes, chrysophytes and xanthophytes. Anal Jardín Bot Mad 57(2):251–266

    Google Scholar 

  101. Bronk DA, See JH, Bradley P, Killberg L (2007) DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences 4:283–296

    Article  Google Scholar 

  102. Schilling KE, Kim S-W, Jones CS (2017) Use of water quality surrogates to estimate total phosphorus concentrations in Iowa rivers. J Hydrol Reg Stud 12:111–121

    Article  Google Scholar 

  103. Lannergård EE, Ledesma JLJ, Fölster J, Futter MN (2019) An evaluation of high frequency turbidity as a proxy for riverine total phosphorus concentrations. Sci Total Environ 651(1):103–113

    Article  Google Scholar 

  104. Villa A, Fölster J, Kyllmar K (2019) Determining suspended solids and total phosphorus from turbidity: comparison of high-frequency sampling with conventional monitoring methods. Environ Monit Assess 191(10):605–620

    Article  Google Scholar 

  105. Correll DL (1999) Phosphorus: a rate limiting nutrient in surface waters. Poultry Sci 78(5):674–682

    Article  Google Scholar 

  106. Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM (2016) Reducing phosphorus to Curb lake eutrophication is a success. Environ Sci Technol 50(17):8923–8929

    Article  Google Scholar 

  107. Lambou VW, Hern SC, Taylor WD, Williams LR (1982) Chlorophyll, phosphorus, Secchi disk, and trophic state. J Am Water Resour As 18(5):807–813

    Article  Google Scholar 

  108. Brezonik PL (1978) Effect of organic color and turbidity of Secchi disk transparency. J Fish Res Board Can 35(11):1410–1416

    Article  Google Scholar 

  109. Stehlík M, Dušek J, Kiseľák J (2016) Missing chaos in global climate change data interpreting? Ecol Complex 25:53–59

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Cantabrian Basin Authority (Spanish Ministry of Agriculture, Food and Environment) for providing the experimental dataset used in this research. Additionally, we would like to thank Anthony Ashworth for his revision of English grammar and spelling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulino José García-Nieto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Nieto, P.J., García-Gonzalo, E., Alonso Fernández, J.R. et al. Modeling algal atypical proliferation in La Barca reservoir using L-SHADE optimized gradient boosted regression trees: a case study. Neural Comput & Applic 33, 7821–7838 (2021). https://doi.org/10.1007/s00521-020-05523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05523-0

Keywords