A novel bat flower pollination algorithm for synthesis of linear antenna arrays | Neural Computing and Applications
Skip to main content

A novel bat flower pollination algorithm for synthesis of linear antenna arrays

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel algorithm, namely bat flower pollination (BFP) is proposed for synthesis of unequally spaced linear antenna array (LAA). The new method is a combination of bat algorithm (BA) and flower pollination algorithm (FPA). In BFP, both BA and FPA interact with each other to escape from local minima. The results of BFP for solving a set of 13 benchmark functions demonstrate its superior performance as compared to variety of well-known algorithms available in the literature. The novel proposed method is also used for the synthesis of unequally spaced LAA for single and multi-objective design. Simulation results show that BFP is able to provide better synthesis results than wide range of popular techniques like genetic algorithm, differential evolution, cuckoo search, particle swarm optimization, back scattering algorithm and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cen L, Ser W, Yu ZL, Rahardja S (2008) An improved genetic algorithm for aperiodic array synthesis. In: Proceedings IEEE international conference on acoustics, speech and signal processing, Las Vegas, NV, 31 Mar–4 Apr 2008, pp 2465–2468

  2. Rattan M, Patterh MS, Sohi BS (2007) Synthesis of aperiodic liner antenna arrays using genetic algorithm. In: Applied electromagnetics and communications, 19th international conference on ICECom-2007, pp 1–4, 24–26 Sept. 2007

  3. Dib N, Goudos S, Muhsen H (2010) Application of Taguchi’s optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays. PIER 102:159–180

    Article  Google Scholar 

  4. Lin Chuan, Qing Anyong, Feng Quanyuan (2010) Synthesis of unequally spaced antenna arrays by using differential evolution. IEEE Trans Antennas Propag 58(8):2553–2561

    Article  Google Scholar 

  5. Khodier M (2013) Optimisation of antenna arrays using the cuckoo search algorithm. IET Microw Antenna Propag 7(6):458–464

    Article  Google Scholar 

  6. Singh U, Salgotra R (2016) Optimal synthesis of linear antenna arrays using modified spider monkey optimization. Arab J Sci Eng 41(8):2957–2973

    Article  Google Scholar 

  7. Cengiz Y, Tokat H (2008) Linear antenna array design with use of genetic, memetic and tabu search optimization algorithms. Prog Electromagn Res C 1:63–72

    Article  Google Scholar 

  8. Jin N, Rahmat-Samii Y (2007) Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multi-objective implementations. IEEE Trans Antennas Propag 55(3):556–567

    Article  Google Scholar 

  9. Khodier M, Al-Aqeel M (2009) Linear and circular array optimization: a study using particle swarm intelligence. PIER B 15:347–373

    Article  Google Scholar 

  10. Khodier MM, Christodoulou CG (2005) Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans Antennas Propag 53(8):2674–2679

    Article  Google Scholar 

  11. Liu D, Feng Q, Wang W-B, Yu X (2011) Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization. PIER 118:205–221

    Article  Google Scholar 

  12. Goudos SK, Moysiadou V, Samaras T, Siakavara K, Sahalos JN (2010) Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control. IEEE Antennas Wirel Propag Lett 9:125–129

    Article  Google Scholar 

  13. Wang W, Feng Q, Liu D (2011) Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays. PIER 115:173–189

    Article  Google Scholar 

  14. Sharaqa A, Dib N (2013) Design of linear and elliptical antenna arrays using biogeography based optimization. Arab J Sci Eng 39(4):2929–2939

    Article  Google Scholar 

  15. Singh U, Kamal TS (2012) Optimal synthesis of thinned arrays using biogeography based optimization. PIER M 24:141–155

    Article  Google Scholar 

  16. Chowdhury A, Giri R, Ghosh A, Das S, Abraham A, Snasel V (2010) Linear antenna array synthesis using fitness adaptive differential evolution algorithm. Proceedings of the international conference on evolutionary computation, IEEE Press Barcelona, Spain, pp 3137–3144

  17. Singh U, Rattan M (2014) Design of linear and circular antenna arrays using cuckoo optimization algorithm. PIER C 46:1–11

    Article  Google Scholar 

  18. Guney K, Onay M (2011) Optimal synthesis of linear antenna arrays using a harmony search algorithm. Expert Syst Appl 38(12):15455–15462

    Article  Google Scholar 

  19. Rajo-Iglesias E, Quevedo-Teruel O (2007) Linear array synthesis using an ant colony optimization based algorithm. IEEE Antennas Propag Mag 49:70–79

    Article  Google Scholar 

  20. Guney K, Durmus A (2015) Pattern nulling of linear antenna arrays using backtracking search optimization algorithm. Int J Antennas Propag. doi:10.1155/2015/713080

    Article  Google Scholar 

  21. Singh U, Salgorta R (2016) Synthesis of linear antenna array using flower pollination algorithm. Neural Comput Appl 1–11. doi:10.1007/s00521-016-2457-7

    Article  Google Scholar 

  22. Balannis C (1997) Antenna theory-analysis and design, 2nd edn. Wiley, New York

    Google Scholar 

  23. Yang XS (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

    Book  Google Scholar 

  24. Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation. Springer, Berlin, pp. 240–249

    Chapter  Google Scholar 

  25. Yang XS, Xingshi H (2013) Bat algorithm: literature review and applications. Int J Bio Inspired Comput 5(3):141–149

    Article  Google Scholar 

  26. Fister I Jr, Fister D, Yang XS (2013) A hybrid bat algorithm. Elektrotehniski Vestnik 80:1–7

    MATH  Google Scholar 

  27. Kavousi-Fard A, Niknam T, Fotuhi-Firuzabad M (2016) A novel stochastic framework based on cloud theory and-modified bat algorithm to solve the distribution feeder reconfiguration. IEEE Trans Smart Grid 7(2):740–750

    Google Scholar 

  28. Zhou Y et al. (2016) A hybrid bat algorithm with path relinking for the capacitated vehicle routing problem. In: Metaheuristics and optimization in Civil Engineering, Springer International Publishing, pp 255–276

  29. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  Google Scholar 

  30. Wang R, Zhou Y (2014) Flower pollination algorithm with dimension by dimension improvement. Math Probl Eng 1–9

    Google Scholar 

  31. El-henawy I, Ismail M (2014) An improved chaotic flower pollination algorithm for solving large integer programming problems. Int J Digit Content Technol Appl 8(3):72–81

    Google Scholar 

  32. Draa A (2015) On the performances of the flower pollination algorithm–Qualitative and quantitative analyses. Appl Soft Comput 34:349–371

    Article  Google Scholar 

  33. Jamil M, Yang X (2013) A literature survey of benchmark functions for global optimisation problems. IJMMNO 4(2):150–194

    Article  Google Scholar 

  34. Liang JJ, Qu BY, Sugathan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 Special session and competition on single objective real-parameter numerical optimization. Technical Report. Nanyang Technological University, Singapore

    Google Scholar 

  35. Derrac SG, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1):3–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Salgotra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgotra, R., Singh, U. A novel bat flower pollination algorithm for synthesis of linear antenna arrays. Neural Comput & Applic 30, 2269–2282 (2018). https://doi.org/10.1007/s00521-016-2833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2833-3

Keywords