Texture anisotropy technique in brain degenerative diseases | Neural Computing and Applications Skip to main content

Advertisement

Log in

Texture anisotropy technique in brain degenerative diseases

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Structural alterations anisotropy-based measured for different areas for the most common types of dementia diseases could be a biomarker of brain impairment. The current work aims to assess whether texture anisotropy can discriminate both healthy versus Alzheimer’s and Pick’s patients based on regional evaluation while maintaining high predictive power. The investigated area is reduced from the whole-brain surface to three major lobes (i.e., frontal, temporal and parietal). A predictive model was proposed to associate a disease with a specific area in the brain based on the anisotropy values. Simultaneous analysis of 1680 measurements from 105 brain magnetic resonance images acquired as T2w and PD sequences was performed to establish the significance of the model. The cerebral calcinosis disease has been used as artificial ground truth. The association based on textural anisotropy between targeted diseases and control patients was performed by using Pearson’s correlation coefficients. A new proposed consistency index investigated the texture anisotropy relevance for all image’s types and all analyzed classes and regions. The validation study is based on area under the receiver-operating characteristic curve that depicted the overall diagnostic performance of the texture anisotropy in each region. The proposed model demonstrated that texture anisotropy is accurate solution in diagnosis of Alzheimer’s and Pick’s diseases when the investigated area is reduced to major lobes, with sensitivity >90% and specificity >80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Parente DB, Gasparetto EL, da Cruz Jr LCH, Domingues RC, Baptista AC, Carvalho ACP, Domingues RC (2008) Potential role of diffusion tensor MRI in the differential diagnosis of mild cognitive impairment and Alzheimer’s disease. Am J Roentgenol 190:1369–1374

    Article  Google Scholar 

  2. de Souza LC, Lamari F, Belliard S, Jardel C, Houillier C, de Paz R, Dubois B, Sarazin M (2011) Cerebrospinal fluid biomarkers in the differential diagnosis of Alzheimer’s disease from other cortical dementias. J Neurol Neurosurg Psychiatry 82:240–246

    Article  Google Scholar 

  3. Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, Mormino EC, O’Neil P, Janabi M, Karydas A, Growdon ME, Jang JY, Huang EJ, DeArmond SJ, Trojanowski JQ, Grinberg LT, Gorno-Tempini ML, Seeley WW, Miller BL, Jagust WJ (2011) Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77:2034–2042

    Article  Google Scholar 

  4. Hore S, Chakroborty S, Ashour AS, Dey N, Ashour AS, Sifakipistolla D, Bhattacharya T, Bhadra Chaudhuri SR (2015) Finding contours of hippocampus brain cell using microscopic image analysis. J Adv Microsc Res 10(2):93–103

    Article  Google Scholar 

  5. Baldarçara L, Currie S, Hadjivassiliou M, Hoggard N, Jack A, Jackowski AP, Mascalchi M, Parazzini C, Reetz K, Righini A, Schulz JB (2015) Consensus paper: radiological biomarkers of cerebellar diseases. Cerebellum 14(2):175–196

    Article  Google Scholar 

  6. Fleisher AS, Sun S, Ward CP et al (2008) Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive impairment. Neurology 70:191–199

    Article  Google Scholar 

  7. Jessen F, Gür O, Block W et al (2009) A multicenter (1)H-MRS study of the medial temporal lobe in AD and MCI. Neurology 72:1735–1740

    Article  Google Scholar 

  8. Bierme H, Richard FJP (2011) Analysis of texture anisotropy based on some Gaussian fields with spectral density. In: Bergounioux M (ed) Mathematical image processing. Springer, Berlin, pp 59–73

    Chapter  Google Scholar 

  9. Bierme H, Richard F (2008) Estimation of anisotropic Gaussian fields through Radon transform. ESAIM Probab Stat 12(1):30–50

    Article  MathSciNet  MATH  Google Scholar 

  10. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804

    Article  Google Scholar 

  11. Dougherty ER, Lotufo RA (2003) Hands-on morphological image processing. SPIE Press, Bellingham

    Book  Google Scholar 

  12. Kovalev V, Kruggel F (2007) Texture anisotropy of the brain’s white matter as revealed by anatomical MRI. IEEE Trans Med Imaging 26(5):678–685

    Article  Google Scholar 

  13. Vliet LJ, Verbeek PW (1995) Estimators for orientation and anisotropy for digitized images. In: van Katwijk J, Gerbrands JJ, van Steen MR, Tonino JFM (eds) Annual conference of the advanced school for computing and imaging, Heijen, pp 442–450

  14. Lee WH, Kim TS (2012) Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation. Med Eng Phys 34(1):85–98

    Article  Google Scholar 

  15. Shu C, Jain R (1994) Vector field analysis for oriented patterns. IEEE Trans Pattern Anal Mach Intell 16:946–950

    Article  Google Scholar 

  16. Kovalev VA, Kruggel F, Gertz HJ, von Cramon DY (2001) Three-dimensional texture analysis of MRI brain datasets. IEEE Trans Med Imaging 20(5):424–433

    Article  Google Scholar 

  17. Bonami A, Estrade A (2003) Anisotropic analysis of some Gaussian models. J Fourier Anal Appl 9:215–236

    Article  MathSciNet  MATH  Google Scholar 

  18. Richard FJP, Bierme H (2010) Statistical tests of anisotropy for fractional Brownian textures application to full-field digital mammography. J Math Imaging Vis 36(3):227–240

    Article  Google Scholar 

  19. Zhang J, Tong L, Wang L et al (2008) Texture analysis of multiple sclerosis: a comparative study. Magn Reson Imaging 26:1160–1166

    Article  Google Scholar 

  20. Besson P, Bernasconi N, Colliot O et al (2008) Surface-based texture and morphological analysis detects subtle cortical dysplasia. Med Image Comput Comput Assist Interv 11(pt 1):645–652

    Google Scholar 

  21. Kaeriyama T, Kodama N, Shimada T et al (2002) Application of run length matrix to magnetic resonance imaging diagnosis of Alzheimer-type dementia. Nippon Hoshasen Gijutsu Gakkai Zasshi 58:1502–1508 (in Japanese)

    Article  Google Scholar 

  22. Piffet L (2009) A locally anisotropic model for image texture extraction, image processing with Matlab: applications in medicine and biology. In: Demirkaya O, Asyali MH, Saho PK (eds) Mathematical image processing. CRC Press, Boca Raton, pp 41–58

    Google Scholar 

  23. Eichkitz CG, Schreilechner MG, Groot P, Amtmann J (2015) Mapping directional variations in seismic character using gray-level co-occurrence matrix-based attributes. Earth Sci 33:T13–T23

    Google Scholar 

  24. Prasanna P, Tiwari P, Madabhushi A (2014) Co-occurrence of local anisotropic gradient orientations (CoLIAGe): distinguishing tumor confounders and molecular subtypes on MRI. Med Image Comput Comput Assist Interv 17(Pt 3):73–80

    Google Scholar 

  25. http://www.med.harvard.edu/AANLIB/home.html

  26. Moldovanu S, Moraru L, Biswas A (2016) Edge-based structural similarity analysis in brain MR images. J Med Imaging Health Inf 6:1–8

    Article  Google Scholar 

  27. e-Anatomy atlas at: http://www.imaios.com/en

  28. Buades A, Coll B, Morel J-M (2011) Non-local means denoising, image processing on line, 1. doi:10.5201/ipol.2011.bcm_nlm

  29. Zhang X, Hou G, Ma J, Yang W, Lin B, Xu Y et al (2014) Denoising MR images using non-local means filter with combined patch and pixel similarity. PLoS ONE 9(6):e100240

    Article  Google Scholar 

  30. Moldovanu S, Moraru L, Biswas A (2015) Robust skull stripping segmentation based on irrational mask for magnetic resonance brain images. J Digit Imaging 29(6):738–747

    Article  Google Scholar 

  31. Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK et al (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075

    Article  Google Scholar 

  32. Carass A, Cuzzocreo J, Wheeler MB, Bazin PL, Resnick SM, Princea JL (2011) Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. NeuroImage 56(4):1982–1992

    Article  Google Scholar 

  33. Chetverikov D, Haralick RM (1995) Texture anisotropy, symmetry, regularity: recovering structure and orientation from interaction maps. In: Pycock D (ed) Proceedings of the 6th British machine vision conference. BMVA, Birmingham, pp 57–66

    Google Scholar 

  34. Moldovanu S, Moraru L, Bibicu D (2011) Characterization of myocardium muscle biostructure using first order features. Dig J Nanomater Bios 6(3):1357–1365

    Google Scholar 

  35. Moldovanu S, Bibicu D, Moraru L, Nicolae MC (2011) Classification features of US images liver extracted with co‐occurrence matrix using the nearest neighbor algorithm. In: AIP conference proceedings, pp 565–570

  36. Hassani ASB, Hassouni M, Jennane R, Rziza M, Lespessailles E (2012) Texture analysis for trabecular bone x-ray images using anisotropic Morlet wavelet and Renyi entropy. Image and signal processing. Lecture Notes in Computer Science, vol 7340, pp 290–297

  37. Neupauer RM, Powell KL (2005) A fully-anisotropic Morlet wavelet to identify dominant orientation in a porous medium. Comput Geosci 31:465–471

    Article  Google Scholar 

  38. The Ronald and Nancy Reagan Research Institute of the Alzheimer′s Association, The National Institute on Aging Working Group (1998) Consensus report of the Working Group on: ″Molecular and Biochemical Markers of Alzheimer′s Disease″. Neurobiol Aging 19:109–116

    Article  Google Scholar 

  39. Samanta S, Choudhury A, Dey N, Ashour AS, Balas VE (2016) Quantum inspired evolutionary algorithm for scaling factors optimization during manifold medical information embedding. In: Bhattacharyya S, Maulik U (eds) Quantum inspired computational intelligence: research and applications. Morgan Kaufmann, Los Altos

    Google Scholar 

  40. Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty S, Sanches J, Kumar D, Marinho RT, Suri JS (2016) Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm. Comput Methods Programs Biomed 130:118–134

    Article  Google Scholar 

  41. Ahmed SS, Dey N, Ashour AS, Sifaki-Pistolla D, Bălas-Timar D, Balas VE, Tavares JM (2016) Effect of fuzzy partitioning in Crohn’s disease classification: a neuro-fuzzy-based approach. Med Biol Eng Comput 22:1–5

    Google Scholar 

  42. N Dey, AB Roy, M Pal, A Das (2012) FCM based blood vessel segmentation method for retinal images. Int J Comput Sci Netw 1(3). ISSN 2277–5420

  43. Dey N, Ashour A, Samanta S, Chakraborty S, Sifaki D, Ashour A, Nguyen NG, Le D-N (2016) Healthy and unhealthy rat hippocampus cells classification: a neural based automated system for Alzheimer disease classification. J Adv Microsc Res 11:1–10

    Article  Google Scholar 

  44. Ashour AS, Samanta S, Dey N, Kausar N, Abdessalemkaraa WB, Hassanien AE (2015) Computed tomography image enhancement using cuckoo search: a log transform based Approach. J Signal Inf Process 6(3):244

    Google Scholar 

  45. Dey N, Ashour AS, Beagum S, Pistola DS, Gospodinov M, Gospodinova EP, Tavares JMRS (2015) Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising. J Imaging 1:60–84

    Article  Google Scholar 

  46. Ghosh A, Sarkar A, Ashour AS, Balas-Timar D, Dey N, Balas VE (2015) Grid color moment features in glaucoma classification. Int J Adv Comput Sci Applications 6(9):99–107

    Article  Google Scholar 

Download references

Acknowledgements

The second author (S.M.) would like to thank Project PERFORM ID POSDRU/159/1.5/S/138963 of ‘Dunărea de Jos’ University of Galati, Romania for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira S. Ashour.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraru, L., Moldovanu, S., Dimitrievici, L.T. et al. Texture anisotropy technique in brain degenerative diseases. Neural Comput & Applic 30, 1667–1677 (2018). https://doi.org/10.1007/s00521-016-2777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2777-7

Keywords

Navigation