A path cost-based GRASP for minimum independent dominating set problem | Neural Computing and Applications Skip to main content
Log in

A path cost-based GRASP for minimum independent dominating set problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The minimum independent dominating set problem (MIDS) is an extension of the classical dominating set problem with wide applications. In this paper, we describe a greedy randomized adaptive search procedure (GRASP) with path cost heuristic for MIDS, as well as the classical tabu mechanism. Our novel GRASP algorithm makes better use of the vertex neighborhood information provided by path cost and thus is able to discover better and more solutions and to escape from local optimal solutions when the original GRASP fails to find new improved solutions. Moreover, to further overcome the serious cycling problem, the tabu mechanism is employed to forbid some just-removed vertices back to the candidate solution. Computational experiments carried out on standard benchmarks, namely DIMACS instances, show that our algorithm consistently outperforms two MIDS solvers as well as the original GRASP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Erciyes K, Dagdeviren O, Cokuslu D et al (2007) Graph theoretic clustering algorithms in mobile ad hoc networks and wireless sensor networks. Appl. Comput. Math 6(2):162–180

    MathSciNet  MATH  Google Scholar 

  2. Chen Y, Liestman A, Liu J (2004) Clustering algorithms for ad hoc wireless networks. Ad Hoc and Sensor Networks 28:76

    Google Scholar 

  3. Lin CR, Gerla M (1997) Adaptive clustering for mobile wireless networks. Selected Areas in Communications, IEEE Journal on 15(7):1265–1275

    Article  Google Scholar 

  4. Nocetti FG, Gonzalez JS, Stojmenovic I (2003) Connectivity based k-hop clustering in wireless networks. Telecommunication systems 22(1–4):205–220

    Article  Google Scholar 

  5. Basagni S (1999) Distributed clustering for ad hoc networks. In: Proceedings of the 1999 international symposium on parallel architectures, algorithms and networks. IEEE Computer Society, pp 310–315

  6. Stankovic JA (2008) Wireless sensor networks. Computer 10:92–95

    Article  Google Scholar 

  7. Santos AC, Bendali F, Mailfert J et al (2009) Heuristics for designing energy-efficient wireless sensor network topologies. Journal of networks 4(6):436–444

    Article  Google Scholar 

  8. Akyildiz IF, Kasimoglu IH (2004) Wireless sensor and actor networks: research challenges. Ad Hoc Netw 2(4):351–367

    Article  Google Scholar 

  9. McLaughlan B, Akkaya K (2007) Coverage-based clustering of wireless sensor and actor networks. In: IEEE international conference on pervasive services. IEEE, pp 45–54

  10. Michael RG, David SJ (1979) Computers and intractability: a guide to the theory of NP-completeness. WH Freeman, San Francisco

    MATH  Google Scholar 

  11. Halldórsson MM (1993) Approximating the minimum maximal independence number. Information Processing Letters 46(4):169–172

    Article  MathSciNet  MATH  Google Scholar 

  12. Goddard W, Henning MA (2013) Independent domination in graphs: a survey and recent results. Discrete Mathematics 313(7):839–854

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson DS, Yannakakis M, Papadimitriou CH (1988) On generating all maximal independent sets. Information Processing Letters 27(3):119–123

    Article  MathSciNet  MATH  Google Scholar 

  14. Moon JW, Moser L (1965) On cliques in graphs. Israel journal of Mathematics 3(1):23–28

    Article  MathSciNet  MATH  Google Scholar 

  15. Gaspers S, Liedloff M (2006) A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs. Graph-theoretic concepts in computer science. Springer, Berlin, pp 78–89

    MATH  Google Scholar 

  16. Liu C, Song Y (2006) Exact algorithms for finding the minimum independent dominating set in graphs. Algorithms and computation. Springer, Berlin, pp 439–448

    MATH  Google Scholar 

  17. Bourgeois N, Della Croce F, Escoffier B et al (2013) Fast algorithms for min independent dominating set. Discrete Applied Mathematics 161(4):558–572

    Article  MathSciNet  MATH  Google Scholar 

  18. Cai SW, Su KL, Luo C et al (2013) Numvc: an efficient local search algorithm for minimum vertex cover. J Artif Intell Res 46:687–716

    MathSciNet  MATH  Google Scholar 

  19. Huang P, Yin M (2014) An upper (lower) bound for max (min) CSP. Science China Information Sciences 57(7):1–9

    MathSciNet  MATH  Google Scholar 

  20. Gao J, Wang J, Yin M (2015) Experimental analyses on phase transitions in compiling satisfiability problems. Science China Information Sciences 58(3):1–11

    Article  Google Scholar 

  21. Li X, Yin M (2015) Modified Cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80–97

    Article  Google Scholar 

  22. Wang YY, Ouyang DT, Zhang L et al (2015) A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity. Sci China Inf Sci. doi:10.1007/s11432-015-5377-8

    Google Scholar 

  23. Wang YY, Cai SW, Yin MH (2016) Two efficient local search algorithms for maximum weight clique problem. In: AAAI

  24. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877

    Article  Google Scholar 

  25. Li X, Wang J, Yin M (2014) Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Comput Appl 24(6):1233–1247

    Article  Google Scholar 

  26. Li X, Yin M (2014) Self adaptive constrained Artificial Bee Colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723–734

    Article  Google Scholar 

  27. Li R, Hu S, Wang Y, Yin M A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem. Neural Comput Appl. doi:10.1007/s00521-015-2172-9

  28. Festa P, Resende MGC (2002) GRASP: an annotated bibliography. Essays and surveys in metaheuristics. Springer, Berlin, pp 325–367

    Book  MATH  Google Scholar 

  29. Festa P, Resende MGC (2009) An annotated bibliography of GRASP–Part I: algorithms. International Transactions in Operational Research 16(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  30. Festa P, Resende MGC (2009) An annotated bibliography of GRASP–Part II: applications. International Transactions in Operational Research 16(2):131–172

    Article  MathSciNet  MATH  Google Scholar 

  31. Glover F (1997) Tabu search and adaptive memory programming—advances, applications and challenges. Interfaces in computer science and operations research. Springer, Berlin, pp 1–75

    MATH  Google Scholar 

  32. Glover F (1989) Tabu search-part I. ORSA Journal on computing 1(3):190–206

    Article  MATH  Google Scholar 

  33. Glover F (1990) Tabu search—part II. ORSA Journal on computing 2(1):4–32

    Article  MATH  Google Scholar 

  34. Johnson DS, Trick MA (1993) Cliques, coloring, and satisfiability: second DIMACS implementation challenge, vol 26. American Mathematical Society, Providence

    MATH  Google Scholar 

  35. Aiex RM, Resende MGC, Ribeiro CC (2007) TTT plots: a perl program to create time-to-target plots. Optimization Letters 1:355–366

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors of this paper express sincere gratitude to all the anonymous reviewers for their hard work. This work was supported in part by NSFC under Grant Nos. (61272208, 61370156, 61403076, 61403077, 61402196), Program for New Century Excellent Talents in University (NCET-13-0724), and Jilin Province Science and Technology Development Plan under Grant Nos. (20140520067JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, R., Zhou, Y. et al. A path cost-based GRASP for minimum independent dominating set problem. Neural Comput & Applic 28 (Suppl 1), 143–151 (2017). https://doi.org/10.1007/s00521-016-2324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2324-6

Keywords

Navigation