Dynamical balance optimization and control of biped robots in double-support phase under perturbing external forces | Neural Computing and Applications
Skip to main content

Dynamical balance optimization and control of biped robots in double-support phase under perturbing external forces

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To realize the dynamic balance optimization and control of biped robots under the perturbing external forces in the double-support phase, a systematic scheme is proposed in this paper. First, a constrained dynamic model of biped robots and a reduced order dynamical model for the double-support phase are formulated. Considering the dynamic external wrench applied on biped robots, we present a dynamic force distribution approach based on quadratic objective function for computing the optimal contact forces to equilibrate the dynamic external wrench. As a result, the sum of the normal force components is minimized for enhancing safety and energy saving. Then, one primary recurrent neural network (RNN) is adopted to solve the optimization problem subject to both equality and inequality constraints. For the derived optimized contact force and motion, hybrid motion/force control is proposed based on another RNN to approximate unknown dynamic functions. Adaptive learning algorithms for learning the parameters of the RNN are provided as well. The proposed control can deal with the uncertainties including approximation errors and external disturbances. Extensive simulations are presented to demonstrate the effectiveness of the proposed optimization and control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Motoi N, Suzuki T, Ohnishi K (2009) A bipedal locomotion planning based on virtual linear inverted pendulum mode. IEEE Trans. Industrial Eletronics 56(1):54–61

    Article  Google Scholar 

  2. Braun DJ, Goldfarb M (2009) A control approach for actuated dynamic walking in biped robots. IEEE Trans. Robotics 25(6):1292–1303

    Article  Google Scholar 

  3. Furusho J, Sano A (1990) Sensor-based control of a nine-link biped. Int J Robot Res 9(2):83–98

    Article  Google Scholar 

  4. Vukobratovic M, Borovac B (2004) Zero-moment point thirty five years of its life. Int. J. Humanoid Robot 1(1):157–173

    Article  Google Scholar 

  5. Harada K, Kajita S, Kaneko K, Hirukawa H (2003) ZMP analysis for arm/leg coordination. In: Proceedings of IEEE/RSJ international conference intelligent robots system, Las Vegas, NV, pp 75–81

  6. Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The development of Honda humanoid robot. In: Proceedings of IEEE international conference on robotics automation, Leuven, Belgium, vol 2, pp. 1321–1326

  7. Setiawan S, Hyon S, Yamaguchi J, Takanishi A (1999) Physical interaction between human and a bipedal humanoid robot-realization of human-follow walking. In: IEEE international conference on robotics and automation, pp 361–367

  8. Liu Z, Xu S, Zhang Y, Chen X, Chen CLP (2014) Interval type-2 fuzzy kernel based support vector machine algorithm for scene classification of humanoid robot. Soft Comput 18(3):589–606

    Article  Google Scholar 

  9. Kuffner JJ, Kagami S, Nishiwaki K, Inaba M, Inoue H (2002) Dynamically-stable motion planning for humanoid robots. Auton Robots 12:105–118

    Article  MATH  Google Scholar 

  10. Manchester IR, Mettin U, Iida F, Tedrake R (2011) Stable dynamic walking over uneven terrain. Int J Robot Res 30(3):265–279

    Article  MATH  Google Scholar 

  11. Lim S, Oh SN, Kim KI (2012) Balance control for biped walking robots using only zero-moment-point position signal. Eletron Lett 48(1):19–20

    Article  Google Scholar 

  12. Ge SS, Li Z (2012) Data driven adaptive predictive control for holonomic constrained under-actuated biped robots. IEEE Trans Control Syst Technol 20(3):787–795

    Article  MathSciNet  Google Scholar 

  13. Cui R, Yan W (2012) Mutual synchronization of multiple robot manipulators with unknown dynamics. J Intell Rob Syst 68(2):105–119

    Article  MATH  Google Scholar 

  14. Cui R, Ren B, Ge SS (2012) Synchronised tracking control of multi-agent system with high-order dynamics. IET Control Theory Appl 6(5):603–614

    Article  MathSciNet  Google Scholar 

  15. Cui R, Yan W, Xu D (2012) Synchronization of multiple autonomous underwater vehicles without velocity measurements. Sci China Inf Sci 55(7):1693–1703

    Article  MathSciNet  MATH  Google Scholar 

  16. He W, Zhang S, Ge SS (2014) adaptive control of a thruster assisted position mooring system. Automatica 50(7):1843–1851

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao Z, He W, Ge SS (2014) Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans Control Syst Technol 22(4):1536–1543

    Article  Google Scholar 

  18. He W, Zhang S, Ge SS (2014) Adaptive boundary control of a nonlinear flexible string system. IEEE Trans Control Syst Technol 22(3):1088–1093

    Article  Google Scholar 

  19. Li Z, Yang C (2012) Neural-adaptive output control of a class of transportation vehicles based on wheeled inverted pendulum models. IEEE Trans Control Syst Technol 20(6):1583–1591

    Article  MathSciNet  Google Scholar 

  20. Panteley E, Stotsky A (1993) Adaptive trajectory/force control scheme for constrained robot manipulators. Int J Adapt Control Signal Process 7(6):489–496

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang L, Liu Z, Chen CLP, Zhang Y (2014) Interval type-2 fuzzy weighted support vector machine learning for energy efficient biped walking. Appl Intell 40(3):453–463

    Article  Google Scholar 

  22. Li Z, Su C-Y (2013) Neural-adaptive control of single-master multiple slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainty. IEEE Trans Neural Netw Learn Syst 24(9):1400–1413

    Article  Google Scholar 

  23. Li Z, Kang Y (2010) Dynamic coupling switching control incorporating support vector machines for wheeled mobile manipulators with hybrid joints. Automatica 46(5):785–958

    Article  MathSciNet  MATH  Google Scholar 

  24. Aoi S, Tsuchiya K (2005) Locomotion control of a biped robot using nonlinear oscillators. Auton Robots 19:219–232

    Article  Google Scholar 

  25. Freidovich LB, Mettin U, Shiriaev AS, Spong MW (2009) A Passive 2-DOF walker: hunting for gaits using virtual holonomic constraints. IEEE Trans. Robot 25(5):1202–1208

    Article  Google Scholar 

  26. Grizzle JW, Abba G, Plestan F (2001) Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans Autom Control 46(1):51–64

    Article  MathSciNet  MATH  Google Scholar 

  27. Plestan F, Grizzle JW, Westervelt ER, Abba G (2003) Stable walking of a 7-DOF biped robot. IEEE Trans Robot Autom 19(4):653–668

    Article  Google Scholar 

  28. Ferreira JP, Crisostomo MM, Coimbra AP, Ribeiro B (2009) Control of a biped robot with support vector regression in sagittal plane. IEEE Trans Instrum Measure 58(9):3167–3176

    Article  Google Scholar 

  29. Morimoto J, Atkeson CG (2007) Learning biped locomotion. IEEE Robot Autom Mag 14(2):41–51

    Article  Google Scholar 

  30. Juang J (2000) Fuzzy neural network approaches for robotic gait synthesis. IEEE Trans Syst Man Cybern B Cybern 30(4):594–601

    Article  Google Scholar 

  31. Wang L, Liu Z, Chen CLP, Zhang Y, Lee S, Chen X (2013) Fuzzy SVM learning control system considering time properties of biped walking samples. Eng Appl AI 26(2):757–765

    Article  Google Scholar 

  32. Wang L, Liu Z, Chen PCL, Zhang Y, Lee S, Chen X (2013) A UKF-based predictable SVR learning controller for biped walking. IEEE Trans Syst Man Cybern Syst 43(6):1440–1450

    Article  Google Scholar 

  33. Li Z, Ge SS, Liu S (2014) Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks. IEEE Trans Neural Netw Learn Syst 25(8):1460–1473

    Article  Google Scholar 

  34. Li Z, Xia Y, Su C-Y, Deng J, Fu J, He W (2015) Missile guidance law based on robust model predictive control using neural network optimization. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2014.2345734

    MathSciNet  Google Scholar 

  35. Shih C, Gruver WA (1992) Control of a biped robot in the double-support phase. IEEE Trans Syst Man Cybern 22(4):729–735

    Article  MATH  Google Scholar 

  36. Luenberger DG (1984) Linear and nonlinear programming, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  37. Ge SS, Lee TH, Harris CJ (1998) Adaptive neural network control of robot manipulators. World Scientific, London

    Book  Google Scholar 

  38. Lin F, Shieh H, Shieh P, Shen P (2006) An adaptive recurrent-neural-network motion controller for X-Y table in CNC machine. IEEE Trans Syst Man Cybern B 36(2):286–299

    Google Scholar 

  39. Li Z, Xia Y (2014) Adaptive neural network control of bilateral teleoperation with unsymmetrical stochastic delays and unmodelled dynamics. Int J Robust Nonlinear Control 24(11):1628–1652

    Article  MATH  Google Scholar 

  40. Li Z, Yang K, Bogdan S, Xu B (2013) On motion optimization for robotic manipulators with strong nonlinear dynamic coupling using support area level set algorithm. Int J Control Autom Syst 11(6):1266–1275

    Article  Google Scholar 

  41. Li Z, Chen W (2008) Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators. Eng Appl Artif Intell 21(7):985–1000

    Article  Google Scholar 

  42. Li Z, Yang C (2007) Neuro-adaptive compliant force/motion control for uncertain constrained wheeled mobile manipulator. Int J Robot Autom 22(3):206–214

    Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the editors and the reviewers for the constructive comments and suggestions. This work is supported by the National Natural Science Foundation of China under Projects 61403264 and 61305098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ge, Y., Chen, M. et al. Dynamical balance optimization and control of biped robots in double-support phase under perturbing external forces. Neural Comput & Applic 28, 4123–4137 (2017). https://doi.org/10.1007/s00521-016-2316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2316-6

Keywords