Abstract
The potential future of personal transportation and taxi services may be in some sectors beneficially amended with electric vertical take-off and landing (eVTOL) aircraft. Currently, dozens of companies are actively engaged in the development of eVTOLs, with the imminent commercialization of several vehicles. This article delves into the requirements, the present trends and powertrain technologies surrounding VTOL flight mechanisms. The main challenge for eVTOLs is that the propulsion system becomes part of the primary flight control system and therefore is critical for controlling the vehicle. This puts much higher demands on availability and safety of the powertrains than in conventional aircraft. Furthermore, as mainly propellers and fans are used for control that feature a constant or only slowly varying pitch angle, the thrust has to be dynamically changed using motor speed changes resulting in demands on motor acceleration and deceleration which are far beyond those of other transportation applications. Finally, if lift-to-cruise eVTOLs are considered, conflicting requirements are put on the powertrain, where high power is required for rather short times during take-off and landing whereas a rather low continuous power at high powertrain efficiency is needed during the prolonged wing-borne operation phase. This article provides an overview of regulatory and flight physics for eVTOLs. Thus, requirements for the electrical powertrain are deployed with focus on battery, electric motor, thermal management and HV circuit. As in the case of ground-based vehicles, all these parts must be carefully selected, designed and co-optimized i. a. with focus on weight, energy or safety, but on trend with much more challenging aviation standards to be met.
Zusammenfassung
Die potenzielle Zukunft des Personenverkehrs könnte in einigen Sektoren durch elektrische Vertical Take-Off and Landing (eVTOL)-Flugzeuge vorteilhaft verändert werden. Derzeit arbeiten Dutzende von Unternehmen aktiv an der Entwicklung von eVTOLs, wobei die Kommerzialisierung mehrerer Flugzeuge unmittelbar bevorsteht. Dieser Artikel befasst sich mit den Anforderungen, den aktuellen Trends und den Antriebstechnologien für VTOL-Flugmechanismen. Die größte Herausforderung bei eVTOLs besteht darin, dass das Antriebssystem Teil des primären Flugsteuerungssystems wird und somit entscheidend für dessen Regelung ist. Damit ergeben sich wesentlich höhere Anforderungen an die Verfügbarkeit und Sicherheit des Antriebsstrangs als bei konventionellen Flugzeugen. Da zur Regelung hauptsächlich Propeller mit konstantem oder nur langsam veränderlichem Steigungswinkel verwendet werden, muss der Schub dynamisch über Motordrehzahländerungen geregelt werden, was zu Anforderungen an die Motorbeschleunigung und -verzögerung führt, die weit über derer anderer Transportanwendungen hinausgehen. Schließlich werden bei eVTOLs widersprüchliche Anforderungen an den Antriebsstrang gestellt, da während des Starts und der Landung für kurze Zeit eine hohe Leistung erforderlich ist, während bei den längeren Cruise-Betriebsphasen eine eher geringe Dauerleistung bei hohem Wirkungsgrad des Antriebsstrangs benötigt wird. Dieser Artikel gibt einen Überblick über die Regelungstechnik und Flugphysik von eVTOLs. So werden die Anforderungen an den elektrischen Antriebsstrang mit Schwerpunkt auf Batterie, Elektromotor, Thermalmanagement und HV-Kreislauf dargestellt. Wie bei bodengebundenen Fahrzeugen müssen all diese Komponenten sorgfältig ausgewählt, konstruiert und gemeinsam optimiert werden; u. a. mit Fokus auf Gewicht, Energie oder Sicherheit, dies aber tendenziell mit den viel anspruchsvolleren Luftfahrtstandards, die erfüllt werden müssen.
Similar content being viewed by others
References
Wikipedia https://en.wikipedia.org/wiki/Disk_loading. [Accessed 7 Feb 2024]
EASA (2023) Special Condition for VTOL and Means of Compliance, https://www.easa.europa.eu/en/document-library/product-certification-consultations/special-condition-vtol. [Accessed 7 Feb 2024]
EASA (2021) Final Special Condition SC E‑19—Electric / Hybrid Propulsion System—Issue 01, https://www.easa.europa.eu/en/document-library/product-certification-consultations/final-special-condition-sc-e-19-electric. [Accessed 7 Feb 2024]
SAE (2023) Guidelines for Development of Civil Aircraft and Systems, https://www.sae.org/standards/content/arp4754b/. [Accessed 7 Feb 2024]
Yang X.‑G. (2021) Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft. Joule Elsevier
Lavars N. (2021) eVTOL battery 10 minute recharge, https://newatlas.com/aircraft/evtol-battery-10-minute-recharge/, [Accessed 6 Feb 2024]
Parliament E. (2023) Euro 7: Deal on new EU rules to reduce road transport emissions, https://www.europarl.europa.eu/news/en/press-room/20231207IPR15740/euro-7-deal-on-new-eu-rules-to-reduce-road-transport-emissions, [Accessed 6 Feb 2024]
Viswanathan V. (2022) The challenges and opportunities of battery-powered flight, nature
König A. (2021) An Overview of Parameter and Cost for Battery Electric Vehicles World Electric Vehicle Journal, MDPI
N. Swaminathan (2022) Flying Cars and eVTOLs—Technology, IEEE Transactions on Transportation Electrification, Volume 8
Fraunhofer ISI (2023) Alternative Battery Technologies. Roadmap 2030+
Fraunhofer ISI (2022) Solid-State Battery Roadmap 2035+
NASA (2022) NASAs Solid State Battery Research exceeds initial goals https://www.nasa.gov/aeronautics/nasas-solid-state-battery-research-exceeds-initial-goals-draws-interest/, [Accessed 07. Feb 2024]
Pandail (2023) CATL is collaborating on the development of electric passenger aircraft, https://pandaily.com/catl-is-collaborating-on-the-development-of-electric-passenger-aircraft/. [Accessed 6 Feb 2024]
Li Q. (2023) A 700 W⋅h⋅kg−1 Rechargeable Pouch Type Lithium Battery, Chinese Physics Letters
Bertram O. (2021) UAM Vehicle Design with Emphasis on Electric Powetrain Architectures, https://elib.dlr.de/146611/1/AIAA_SciTech_2022_Paper_final.pdf, [Accessed Feb 2024]
Airframer (2021) City Airbus demonstrates ambition to power the Urban Air Mobility market. https://www.airframer.com/news_story.html?release=81922, [Accessed Feb 2024]
Roll Royce (2023) Rolls Royce Urban Air Mobility, https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/others/rolls-royce-urban-air-mobility.pdf, [Accessed Feb 2024]
Bosch GmbH (2024) Separate Motor Generator for Off Highway, https://www.bosch-mobility.com/de/loesungen/elektromotoren/separater-motor-generator-ohw/ [Accessed Feb 2024]
Yamada Y. (2021) Weight Reduction, Cooling Performance, and Reliability: Key Requirements for Air Mobility Motors, DENSO Tech Links, Volume 11
Wasson C.S. (2015) System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, 2nd Edition. Wiley, United Kingdom
Barnhart R.K. (2016) Introduction to Unmanned Aircraft Systems. CRC Press
F. Cai (2022) A rapid self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current without external power, Journal of Power Sources, Volume 549
Goldammer E.( 2022) The Impact of an Overlaid Ripple Current on Battery Aging: The Development of the SiCWell Dataset, Batteries, Volume 8
Gentejohann M. (2021) Driving Cycle Analysis of the DC Bus Current Ripple in Electric Vehicles, 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe)
Leuchter J. (2018) Overview of Silicon Carbide Power Devices for Aircraft Electrical Systems, IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, England
Perdikakis W. (2020) Comparison of Si and SiC EMI and Efficiency in a Two-Level Aerospace Motor Drive Application, IEEE Transactions on Transportation Electrification, Volume 6, pp. 1401–1411
Wang S. (2010) Investigation of Hybrid EMI Filters for Common-Mode EMI Suppression in a Motor Drive System, IEEE Transactions on Power Electronics, Volume 25, pp. 1034–1045
Wang F. F. (2022) Wide Bandgap Semiconductor-Based Power Electronics for Aviation, IEEE Power Electronics Magazine, Volume 9, pp. 26–36
Wang Z. (2016) Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs, IEEE Transactions on Power Electronics, Volume 31, pp. 1555–1566
He J. (2019) Multi-Domain Design Optimization of dv/dt Filter for SiC-Based Three-Phase Inverters in High-Frequency Motor-Drive Applications, IEEE Transactions on Industry Applications, Volume 55, pp. 5214–5222
Li H. (2019) Robustness of 650‑V Enhancement-Mode GaN HEMTs Under Various Short-Circuit Conditions, IEEE Transactions on Industry Applications, Volume 55, pp. 1807–1816
Funding
The publication was partly written at Virtual Vehicle Research GmbH in Graz and partially funded within the COMET K2 Competence Centers for Excellent Technologies from the Austrian Federal Ministry for Climate Action (BMK), the Austrian Federal Ministry for Labour and Economy (BMAW), the Province of Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The Austrian Research Promotion Agency (FFG) has been authorised for the programme management.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Doppler, C., Holzapfel, F., Scharrer, M.K. et al. Requirements and design of powertrains for eVTOLs. Elektrotech. Inftech. 141, 188–204 (2024). https://doi.org/10.1007/s00502-024-01213-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00502-024-01213-0
Keywords
- Electric Vertical Take-Off and Landing (eVTOL) aircraft
- Electrical powertrain
- Electric airborne propulsion
- eVTOL powertrain design
- Urban Air Mobility (UAM)
- Advanced Air Mobility (AAM)
- Special Conditions for Small-Category VTOL Aircraft (SC-VTOL)